No Arabic abstract
We report measurement of the valence-to-core (VTC) region of the K-shell x-ray emission spectra from several Zn and Fe inorganic compounds, and their critical comparison with several existing theoretical treatments. We find generally good agreement between the respective theories and experiment, and in particular find an important admixture of dipole and quadrupole character for Zn materials that is much weaker in Fe-based systems. These results on materials whose simple crystal structures should not, a prior, pose deep challenges to theory, will prove useful in guiding the further development of DFT and time-dependent DFT methods for VTC-XES predictions and their comparison to experiment.
The present manuscript considers the application of the method of the near-edge X-ray absorption spectroscopy (NEXAFS) for the investigation of the graphene-based systems (from free-standing graphene to the metal-intercalation-like systems). The NEXAFS spectra for the selected systems are calculated in the framework of the approach, which includes the effects of the dynamic core-hole screening. The presented spectral changes from system to system are analysed with the help of the corresponding band-structure calculations. The obtained results are compared with available experimental data demonstrating the excellent agreement between theory and experiment. The direct correlation between the strength of the graphene interaction with the metallic substrate and the spectral distributions (shape and intensities of pi* and sigma* features in the C K NEXAFS spectra) is found that can be taken as a fingerprint for the description of interaction at the graphene/metal interface.
We report the observation of the pressure-induced high-spin to low-spin transition in FeS using new high-pressure synchrotron x-ray emission spectroscopy techniques. The transition is evidenced by the disappearance of the low-energy satellite in the Fe K$beta$ emission spectrum of FeS. Moreover, the phase transition is reversible and closely related to the structural phase transition from a manganese phosphide-like phase to a monoclinic phase. The study opens new opportunities for investigating the electronic properties of materials under pressure.
We report on x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies of the paramagnetic (Mn,Co)-co-doped ZnO and ferromagnetic (Fe,Co)-co-doped ZnO nano-particles. Both the surface-sensitive total-electron-yield mode and the bulk-sensitive total-fluorescence-yield mode have been employed to extract the valence and spin states of the surface and inner core regions of the nano-particles. XAS spectra reveal that significant part of the doped Mn and Co atoms are found in the trivalent and tetravalent state in particular in the surface region while majority of Fe atoms are found in the trivalent state both in the inner core region and surface region. The XMCD spectra show that the Fe$^{3+}$ ions in the surface region give rise to the ferromagnetism while both the Co and Mn ions in the surface region show only paramagnetic behaviors. The transition-metal atoms in the inner core region do not show magnetic signals, meaning that they are antiferromagnetically coupled. The present result combined with the previous results on transition-metal-doped ZnO nano-particles and nano-wires suggest that doped holes, probably due to Zn vacancy formation at the surfaces of the nano-particles and nano-wires, rather than doped electrons are involved in the occurrence of ferromagnetism in these systems.
The valence and spin state evolution of Mn and Co on TbMn$_{rm 1-x}$Co$_{rm x}$O$_3$ series is precisely determined by means of soft and hard x-ray absorption spectroscopy (XAS) and K$beta$ x-ray emission spectroscopy (XES). Our results show the change from Mn$^{3+}$ to Mn$^{4+}$ both high-spin (HS) together with the evolution from Co$^{2+}$ HS to Co$^{3+}$ low-spin (LS) with increasing $rm x$. In addition, high energy resolution XAS spectra on the K pre-edge region are interpreted in terms of the strong charge transfer and hybridization effects along the series. These results correlate well with the spin values of Mn and Co atoms obtained from the K$beta$ XES data. From this study, we determine that Co enters into the transition metal sublattice of TbMnO$_3$ as a divalent ion in HS state, destabilizing the Mn long range magnetic order since very low doping compositions (${rm x} le 0.1$). Samples in the intermediate composition range ($0.4 le {rm x} le 0.6$) adopt the crystal structure of a double perovskite with long range ferromagnetic ordering which is due to Mn$^{4+}$-O-Co$^{2+}$ superexchange interactions with both cations in HS configuration. Ferromagnetism vanishes for ${rm x} ge 0.7$ due to the structural disorder that collapses the double perovskite structure. The spectroscopic techniques reveal the occurrence of Mn$^{4+}$ HS and a fluctuating valence state Co$^{2+}$ HS/Co$^{3+}$ LS in this composition range. Disorder and competitive interactions lead to a magnetic glassy behaviour in these samples.
Linear polarization analysis of hard x-rays is employed to probe electronic anisotropies in metal-containing complexes with very high selectivity. We use the pronounced linear dichroism of nuclear resonant x-ray scattering to determine electric field gradients in an iron(II) containing compound as they evolve during a temperature-dependent high-spin/low-spin phase transition. This method constitutes a novel approach to analyze changes in the electronic structure of metal-containing molecules as function of external parameters or stimuli. The polarization selectivity of the technique allows us to monitor defect concentrations of electronic valence states across phase transitions. This opens new avenues to trace electronic changes and their precursors that are connected to structural and electronic dynamics in the class of metal compounds ranging from simple molecular solids to biological molecules.