Do you want to publish a course? Click here

Rapidity distribution of particle multiplicity in DIS at small x

112   0   0.0 ( 0 )
 Added by Boris Blok
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Analytical study of the rapidity distribution of the final state particles in deep inelastic scattering at small x is presented. We separate and analyse three sources of particle production: fragmentation of the quark-antiquark pair, accompanying coherent soft gluon radiation due to octet color exchange in the t-channel, and fragmentation of gluons that form parton distribution functions. Connection to Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equations and the role of gluon reggezation are also discussed.

rate research

Read More

Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x using the spinor helicity formalism. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.
We compute the next-to-leading order (NLO) impact factor for inclusive photon $+$dijet production in electron-nucleus (e+A) deeply inelastic scattering (DIS) at small $x$. An important ingredient in our computation is the simple structure of ``shock wave fermion and gluon propagators. This allows one to employ standard momentum space Feynman diagram techniques for higher order computations in the Regge limit of fixed $Q^2gg Lambda_{rm QCD}^2$ and $xrightarrow 0$. Our computations in the Color Glass Condensate (CGC) effective field theory include the resummation of all-twist power corrections $Q_s^2/Q^2$, where $Q_s$ is the saturation scale in the nucleus. We discuss the structure of ultraviolet, collinear and soft divergences in the CGC, and extract the leading logs in $x$; the structure of the corresponding rapidity divergences gives a nontrivial first principles derivation of the JIMWLK renormalization group evolution equation for multiparton lightlike Wilson line correlators. Explicit expressions are given for the $x$-independent $O(alpha_s)$ contributions that constitute the NLO impact factor. These results, combined with extant results on NLO JIMWLK evolution, provide the ingredients to compute the inclusive photon $+$ dijet cross-section at small $x$ to $O(alpha_s^3 ln(x))$. First results for the NLO impact factor in inclusive dijet production are recovered in the soft photon limit. A byproduct of our computation is the LO photon+ 3 jet (quark-antiquark-gluon) cross-section.
We provide a semi-classical description of the inclusive gluon induced Deep Inelastic Scattering cross section in a way that accounts for the leading powers in both the Regge and Bjorken limits. Our approach thus allows a systematic matching of small and moderate $x_{rm Bj}$ regimes of gluon proton structure functions. We find a new unintegrated gluon distribution with an explicit dependence on the longitudinal momentum fraction $x$ which entirely spans both the dipole operator and the gluonic Parton Distribution Function. Computing this gauge invariant gluon operator on the lattice could allow to probe the energy dependence of the saturation scale from first principles.
The nuclear modification factor $R_{pA}(p_T)$ provides information on the small-$x$ gluon distribution of a nucleus at hadron colliders. Several experiments have recently measured the nuclear modification factor not only in minimum bias but also for central $pA$ collisions. In this paper we analyze the bias on the configurations of soft gluon fields introduced by a centrality selection via the number of hard particles. Such bias can be viewed as reweighting of configurations of small-$x$ gluons. We find that the biased nuclear modification factor ${cal Q}_{pA}(p_T)$ for central collisions is above $R_{pA}(p_T)$ for minimum bias events, and that it may redevelop a Cronin peak even at small $x$. The magnitude of the peak is predicted to increase approximately like $1/{A_{perp}}^ u$, $ usim0.6pm0.1$, if one is able to select more compact configurations of the projectile proton where its gluons occupy a smaller transverse area $A_perp$. We predict an enhanced ${cal Q}_{pp}(p_T)-1 sim 1/(p_T^2)^ u$ and a Cronin peak even for central $pp$ collisions.
We present a revision of predictions for nuclear shadowing in deep-inelastic scattering at small Bjorken $x_{Bj}$ corresponding to kinematic regions accessible by the future experiments at electron-ion colliders. The nuclear shadowing is treated within the color dipole formalism based on the rigorous Green function technique. This allows incorporating naturally color transparency and coherence length effects, which are not consistently and properly included in present calculations. For the lowest $|qbar qrangle$ Fock component of the photon, our calculations are based on an exact numerical solution of the evolution equation for the Green function. Here the magnitude of shadowing is tested using a realistic form for the nuclear density function, as well as various phenomenological models for the dipole cross section. The corresponding variation of the transverse size of the $qbar q$ photon fluctuations is important for $x_{Bj}gtrsim 10^{-4}$, on the contrary with the most of other models, which use frequently only the eikonal approximation with the frozen transverse size. At $x_{Bj}lesssim 0.01$ we calculate within the same formalism also a shadowing correction for the higher Fock component of the photon containing gluons. The corresponding magnitudes of gluon shadowing correction are compared adopting different phenomenological dipole models. Our results are tested by available data from the E665 and NMC collaborations. Finally, the magnitude of nuclear shadowing is predicted for various kinematic regions that should be scanned by the future experiments at electron-ion colliders.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا