No Arabic abstract
Herein, we elucidate the impact of tubular confinement on the structure and relaxation behaviour of poly(vinylidene difluoride) (PVDF) and how these affect the para-/ferroelectric behavior of this polymer. We use PVDF nanotubes that were solidified in anodic aluminum oxide (AAO) templates. Dielectric spectroscopy measurements evidence a bimodal relaxation process for PVDF nanotubes: besides the bulk-like -relaxation, we detect a notably slower relaxation that is associated with the PVDF regions of restricted dynamics at the interface with the AAO pore. Strickingly, both the bulk-like and the interfacial relaxation tend to become temperature independent as the temperature increases - a behavior that has been observed before in inorganic relaxor ferroelectrics. In line with this, we observe that the real part of the dielectric permittivity of the PVDF nanotubes exhibits a broad maximum when plotted against the temperature, which is, again, a typical feature of relaxor ferroelectrics. As such, we propose that in nanotubular PVDF, ferroelectric-like nanodomains are formed in the amorphous phase regions adjacent to the AAO interface. These ferroelectric nanodomains may result from an anisotropic chain conformation and a preferred orientation of local dipoles due to selective H-bond formation between the PVDF macromolecues and the AAO walls. Such relaxor-ferroelectric-like behaviour has not been observed for non-irradiated PVDF homopolymer; our findings thus may enable in the future alternative applications for this bulk commodity plastic, e.g., for the production of electrocaloric devices for solid-state refrigeration which benefit from a relaxor-ferroelectric-like response.
Phonon engineering focuses on heat transport modulation on atomic-scale. Different from reported methods, it is shown that electric field can also modulate heat transport in ferroelectric polymers, poly(vinylidene fluoride), by both simulation and measurement. Interestingly, thermal conductivities of poly(vinylidene fluoride) array can be enhanced by a factor of 3.25 along the polarization direction by simulation. The semi-crystalline poly(vinylidene fluoride) film can be also enhanced by a factor of 1.5 which is found by both simulation and measurement. The morphology and phonon property analysis reveal that the enhancement arises from the higher inter-chain lattice order, stronger inter-chain interaction, higher phonon group velocity and suppressed phonon scattering. This study offers a new modulation strategy with quick response and without fillers.
An atomistic effective Hamiltonian is used to investigate electrocaloric (EC) effects of Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ (PMN) relaxor ferroelectrics in its ergodic regime, and subject to electric fields applied along the pseudocubic [111] direction. Such Hamiltonian qualitatively reproduces (i) the electric field-versus-temperature phase diagram, including the existence of a critical point where first-order and second-order transitions meet each other; and (ii) a giant EC response near such critical point. It also reveals that such giant response around this critical point is microscopically induced by field-induced percolation of polar nanoregions. Moreover, it is also found that, for any temperature above the critical point, the EC coefficient-versus-electric field curve adopts a maximum (and thus larger electrocaloric response too), that can be well described by the general Landau-like model proposed in [Jiang et al, Phys. Rev. B 96, 014114 (2017)] and that is further correlated with specific microscopic features related to dipoles lying along different rhombohedral directions. Furthermore, for temperatures being at least 40 K higher than the critical temperature, the (electric field, temperature) line associated with this maximal EC coefficient is below both the Widom line and the line representing percolation of polar nanoregions.
We have studied the magnetic field effect on low frequency dielectric properties of Pr0.6Ca0.4MnO3/polyvinylidene fluoride nanocomposite with 22.5% volume fraction of Pr0.6Ca0.4MnO3 nanoparticles. A strong magnetodielectric response was observed below 120 K where Pr0.6Ca0.4MnO3 nanoparticles show the magnetic phase transition indicating a direct correlation between magnetism and dielectric properties. A large change of the dielectric permittivity ~ 30% has been observed in a magnetic field of 4.6 T with loss as low as 0.17 at 70 K. The observed magnetodielectric response has been attributed to the decrement of polaron activation barrier of Pr0.6Ca0.4MnO3 nanoparticles with the increase of magnetic field.
We report measurements of the neutron diffuse scattering in a single crystal of the relaxor ferroelectric material 95.5%Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 (PZN-4.5%PT). We show that the diffuse scattering at high temperatures has a quasielastic component with energy width $agt$ 0.1 meV. On cooling the total diffuse scattering intensity increases, but the intensity and the energy width of the quasielastic component gradually diminish. At 50 K the diffuse scattering is completely static (i.e.the energy width lies within the limits of our instrumental resolution). This suggests that the dynamics of the short-range correlated atomic displacements associated with the diffuse scattering freeze at low temperature. We find that this depends on the wave vector q as the quasielastic diffuse scattering intensities associated with <001> (T1-type) and <110> (T2-type) atomic displacements vary differently with temperature and electric field.
We have performed a series of neutron diffuse scattering measurements on a single crystal of the solid solution Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$ (PZN) doped with 8% PbTiO$_3$ (PT), a relaxor compound with a Curie temperature T$_C sim 450$ K, in an effort to study the change in local polar orders from the polar nanoregions (PNR) when the material enters the ferroelectric phase. The diffuse scattering intensity increases monotonically upon cooling in zero field, while the rate of increase varies dramatically around different Bragg peaks. These results can be explained by assuming that corresponding changes occur in the ratio of the optic and acoustic components of the atomic displacements within the PNR. Cooling in the presence of a modest electric field $vec{E}$ oriented along the [111] direction alters the shape of diffuse scattering in reciprocal space, but does not eliminate the scattering as would be expected in the case of a classic ferroelectric material. This suggests that a field-induced redistribution of the PNR has taken place.