Fractional Calculus and certain integrals of Generalized multiindex Bessel function


Abstract in English

We aim to introduce the generalized multiindex Bessel function $J_{left( beta _{j}right) _{m},kappa ,b}^{left( alpha _{j}right)_{m},gamma ,c}left[ zright] $ and to present some formulas of the Riemann-Liouville fractional integration and differentiation operators. Further, we also derive certain integral formulas involving the newly defined generalized multiindex Bessel function $J_{left( beta _{j}right) _{m},kappa ,b}^{left( alpha _{j}right)_{m},gamma ,c}left[ zright] $. We prove that such integrals are expressed in terms of the Fox-Wright function $_{p}Psi_{q}(z)$. The results presented here are of general in nature and easily reducible to new and known results.

Download