No Arabic abstract
Beyond the attractive strong potential needed for hadronic bound states, strong interactions are predicted to provide repulsive forces depending on the color charges involved. The repulsive interactions could in principle serve for particle acceleration with highest gradients in the order of GeV/fm. Indirect evidence for repulsive interactions have been reported in the context of heavy meson production at colliders. In this contribution, we sketch a thought experiment to directly investigate repulsive strong interactions. For this we prepare two quarks using two simultaneous deep inelastic scattering processes off an iron target. We discuss the principle setup of the experiment and estimate the number of electrons on target required to observe a repulsive effect between the quarks.
One of the major open questions in particle physics is the issue of the neutrino mass ordering (NMO). The current data of the two long-baseline experiments NO$ u$A and T2K, interpreted in the standard 3-flavor scenario, provide a $sim2.4sigma$ indication in favor of the normal neutrino mass ordering. We show that such an indication is completely washed out if one assumes the existence of neutral-current non-standard interactions (NSI) of the flavor changing type involving the $e-tau$ flavors. This implies that the claim for a discovery of the NMO will require a careful consideration of the impact of hypothetical NSI.
Dalitz-plot analyses of $Brightarrow Kpipi$ decays provide direct access to decay amplitudes, and thereby weak and strong phases can be disentangled by resolving the interference patterns in phase space between intermediate resonant states. A phenomenological isospin analysis of $Brightarrow K^*(rightarrow Kpi)pi$ decay amplitudes is presented exploiting available amplitude analyses performed at the Babar, Belle and LHCb experiments. A first application consists in constraining the CKM parameters thanks to an external hadronic input. A method, proposed some time ago by two different groups and relying on a bound on the electroweak penguin contribution, is shown to lack the desired robustness and accuracy, and we propose a more alluring alternative using a bound on the annihilation contribution. A second application consists in extracting information on hadronic amplitudes assuming the values of the CKM parameters from a global fit to quark flavour data. The current data yields several solutions, which do not fully support the hierarchy of hadronic amplitudes usually expected from theoretical arguments (colour suppression, suppression of electroweak penguins), as illustrated from computations within QCD factorisation. Some prospects concerning the impact of future measurements at LHCb and Belle II are also presented. Results are obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using the Rfit scheme to handle theoretical uncertainties.
The exclusive production of axionlike particles (ALPs) by gluon -- induced interactions is investigated in this exploratory study considering $pp$ and $PbPb$ collisions for the energies of the next run of the Large Hadron Collider (LHC). Assuming the Duhram model, we estimate the associated cross sections for the rapidity ranges probed by central and forward detectors. A comparison with the predictions for the exclusive ALP production by photon -- induced interactions is presented. Our results indicate that the contribution of gluon -- induced interactions is nonnegligible and can become dominant in $pp$ collisions for small values of the ALP mass.
A renormalizable non-Abelian theory of strong interactions of pions, mediated by rho-mesons, is formulated at tree- and at one-loop level in perturbation theory. Hadron masses are generated through spontaneous symmetry breaking using the Higgs mechanism. Quantization and gauge fixing is achieved using the generalized class of $R_xi$ gauges. As an application of this theory, pion-pion scattering lengths are obtained at tree-level in good agreement with data.
We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.