Do you want to publish a course? Click here

Simulations of charge-breeding processes in ECRIS

362   0   0.0 ( 0 )
 Added by Vladimir Mironov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charge-breeding processes in Electron Cyclotron Resonance Ion Sources are numerically simulated by using the target helium plasma parameters obtained with NAM-ECRIS code. Breeding efficiency is obtained as a function of 1+ ion injection energy for some alkali ion beams. Time dependencies of extracted ions are calculated; typical times for reaching saturation in currents are in the range of few tens of milliseconds. Role of charge-exchange processes in breeding of ions is discussed. Recycling of ions on the source walls is shown to be important.



rate research

Read More

Three-dimensional numerical model is developed and applied for studies of physical processes in Electron Cyclotron Resonance Ion Source. The model includes separate modules that simulate the electron and ion dynamics in the source plasma in an iterative way. The electron heating by microwaves is simulated by using results of modelling the microwave propagation in the plasma by the COMSOL Multiphysics software. Extracted ion currents and other parameters of the source are obtained for different gas flows into the source. It is observed that the currents are strongly influenced by ion transport in transversal direction induced by the plasma potential gradients. Impact of some special techniques on the source performance is investigated. Magnetic field scaling is shown to reduce the ion losses during their movement toward the extraction aperture, as well as use of the aluminum chamber walls and mixing of the working gas with helium.
68 - A.A. Gorn , M. Turner , E. Adli 2020
In 2017, AWAKE demonstrated the seeded self-modulation (SSM) of a 400 GeV proton beam from the Super Proton Synchrotron (SPS) at CERN. The angular distribution of the protons deflected due to SSM is a quantitative measure of the process, which agrees with simulations by the two-dimensional (axisymmetric) particle-in-cell code LCODE. Agreement is achieved for beam populations between $10^{11}$ and $3 times 10^{11}$ particles, various plasma density gradients ($-20 div 20%$) and two plasma densities ($2times 10^{14} text{cm}^{-3}$ and $7 times 10^{14} text{cm}^{-3}$). The agreement is reached only in the case of a wide enough simulation box (at least five plasma wavelengths).
There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity. The physical basis for this effect is discussed, as are deviations from linear behavior observed in simulations with finite length beams.
77 - N. Pathak , A. Zhidkov , Y. Sakai 2019
The multi-stage technique for laser driven acceleration of electrons become a critical part of full-optical, jitter-free accelerators. Use of several independent laser drivers and shorter length plasma targets allows the stable and reproducible acceleration of electron bunches (or beam) in the GeV energies with lower energy spreads. At the same time the charge coupling, necessary for efficient acceleration in the consecutive acceleration stage(s), depends collectively on the parameters of the injected electron beam, the booster stage, and the non-linear transverse dynamics of the electron beam in the laser pulse wake. An unmatched electron beam injected in the booster stage(s), and its non-linear transverse evolution may result in perturbation and even reduction of the field strength in the acceleration phase of the wakefield. Analysis and characterization of charge coupling in multi-stage laser wakefield acceleration (LWFA) become ultimately important. Here, we investigate two-stage LWFA via fully relativistic multi-dimensional particle-in-cell simulations, and underlying the most critical parameters, which affect the efficient coupling and acceleration of the electron beam in the booster stage.
Electromagnetic fields induced by the space charge in relativistic beams play an important role in Accelerator Physics. They lead to emittance growth, slice energy change, and the microbunching instability. Typically, these effects are modeled numerically since simple description exists only in the limits of large- or small-scale current variations. In this paper we consider an axially symmetric charged beam inside a round pipe and find the solution of the space charge problem that is valid in the full range of current variations. We express the solution for the field components in terms of Greens functions, which are fully determined by just a single function. We then find that this function is an on-axis potential from a charged disk in a round pipe, with transverse charge density $rho_perp(r)$, and it has a compact analytical expression. We finally provide an integrated Greens function based approach for efficient numerical evaluation in the case when the transverse charge density stays the same along the beam.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا