No Arabic abstract
Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as useful experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with physics potentially quite distinct from short-range systems can be realized. In this Letter, we derive general bounds on the linear response energy absorption rates of periodically driven systems of spins or fermions with long-range interactions that are sign changing and fall off as $1/r^alpha$ with $alpha > d/2$. We show that the disordered averaged energy absorption rate at high temperature decays exponentially with the driving frequency. This strongly suggests the presence of a prethermal plateau in which dynamics is governed by an effective, static Hamiltonian for long times, and we provide numerical evidence to support such a statement. Our results are relevant for understanding timescales of both heating and hence new dynamical regimes described by effective Hamiltonians in such long-range systems.
The presence of non-local and long-range interactions in quantum systems induces several peculiar features in their equilibrium and out-of-equilibrium behavior. In current experimental platforms control parameters such as interaction range, temperature, density and dimension can be changed. The existence of universal scaling regimes, where diverse physical systems and observables display quantitative agreement, generates a common framework, where the efforts of different research communities can be -- in some cases rigorously -- connected. Still, the application of this general framework to particular experimental realisations requires the identification of the regimes where the universality phenomenon is expected to appear. In the present review we summarise the recent investigations of many-body quantum systems with long-range interactions, which are currently realised in Rydberg atom arrays, dipolar systems, trapped ion setups and cold atoms in cavity experiments. Our main aim is to present and identify the common and (mostly) universal features induced by long-range interactions in the behaviour of quantum many-body systems. We will discuss both the case of very strong non-local couplings, i.e. the non-additive regime, and the one in which energy is extensive, but nevertheless low-energy, long wavelength properties are altered with respect to the short-range limit. Cases of competition with other local effects in the above mentioned setups are also reviewed.
We state and prove four types of Lieb-Robinson bounds valid for many-body open quantum systems with power law decaying interactions undergoing out of equilibrium dynamics. We also provide an introductory and self-contained discussion of the setting and tools necessary to prove these results. The results found here apply to physical systems in which both long-ranged interactions and dissipation are present, as commonly encountered in certain quantum simulators, such as Rydberg systems or Coulomb crystals formed by ions.
Many-body localization (MBL) behavior is analyzed {in an extended Bose-Hubbard model with quasiperiodic infinite-range interactions. No additional disorder is present. Examining level statistics and entanglement entropy of eigenstates we show that a significant fraction of eigenstates of the system is localized in the presence of strong interactions. In spite of this, our results suggest that the system becomes ergodic in the standard thermodynamic limit in which the energy of the system is extensive. At the same time, the MBL regime seems to be stable if one allows for a super-extensive scaling of the energy. We show that our findings can be experimentally verified by studies of time dynamics in many-body cavity quantum electrodynamics setups. The quench spectroscopy is a particularly effective tool that allows us to systematically study energy dependence of time dynamics and to investigate a mobility edge in our system.
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.
While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renormalization group technique to study the anisotropic Heisenberg model with long-range interactions, decaying with a power $alpha$, which are generated by placing spins at random positions along the chain. This method permits a large-scale finite-size scaling analysis. We examine the full distribution function of the excitation energy gap from the ground state and observe a crossover with decreasing $alpha$. At $alpha_c$ the full distribution coincides with a critical function. Thereby, we find strong evidence for the existence of a many body localization transition in disordered antiferromagnetic spin chains with long range interactions.