Do you want to publish a course? Click here

Properties of the irregular satellite system around Uranus inferred from K2, Herschel and Spitzer observations

63   0   0.0 ( 0 )
 Added by Aniko Farkas-Takacs
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present visible range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand and Setebos taken with Kepler Space Telescope in the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analysed and used to determine size, albedo and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seems to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young Solar system inside the orbit of Uranus.



rate research

Read More

In this paper we present an analysis of Kepler K2 mission Campaign 3 observations of the irregular Neptune satellite, Nereid. We determined a rotation period of P=11.594(+/-)0.017 h and amplitude of dm=0.0328(+/-)00018, confirming previous short rotation periods obtained in ground based observations. The similarities of light curve amplitudes between 2001 and 2015 show that Nereid is in a low-amplitude rotation state nowadays and it could have been in a high-amplitude rotation state in the mid 1960s. Another high-amplitude period is expected in about 30 years. Based on the light curve amplitudes observed in the last 15 years we could constrain the shape of Nereid and obtained a maximum a:c axis ratio of 1.3:1. This excludes the previously suggested very elongated shape of a:c=1.9:1 and clearly shows that Nereids spin axis cannot be in forced precession due to tidal forces. Thermal emission data from the Spitzer Space Telescope and the Herschel Space Observatory indicate that Nereids shape is actually close to the a:c axis ratio limit of 1.3:1 we obtained, and it has a very rough, highly cratered surface
Herschel-PACS measurements of the rotational R(0) and R(1) HD lines in the atmospheres of Uranus and Neptune are analyzed in order to derive a D/H ratio with improved precision for both planets. The derivation of the D/H ratio includes also previous measurements of the R(2) line by the Short Wavelength Spectrometer on board the Infrared Space Observatory (ISO). The available spectroscopic line information of the three rotational transitions is discussed and applied in the radiative transfer calculations. The best simultaneous fit of all three lines requires only a minor departure from the Spitzer temperature profile of Uranus and a departure limited to 2K from the Voyager temperature profile of Neptune (both around the tropopause). The resulting and remarkably similar D/H ratios for Uranus and Neptune are found to be (4.4$pm$0.4)$times10^{-5}$ and (4.1$pm$0.4)$times10^{-5}$ respectively. Although the deuterium enrichment in both atmospheres compared to the protosolar value is confirmed, it is found to be lower compared to previous analysis. Using the interior models of Podolak et al. (1995), Helled et al. (2011) and Nettelmann et al. (2013), and assuming that complete mixing of the atmosphere and interior occured during the planets history, we derive a D/H in protoplanetary ices between (5.75--7.0)$times10^{-5}$ for Uranus and between (5.1--7.7)$times10^{-5}$ for Neptune. Conversely, adopting a cometary D/H for the protoplanetary ices between (15-30)$times10^{-5}$, we constrain the interior models of both planets to have an ice mass fraction of 14-32%, i.e. that the two planets are rock-dominated.
The large and tidally-locked classical moons of Uranus display longitudinal and planetocentric trends in their surface compositions. Spectrally red material has been detected primarily on the leading hemispheres of the outer moons, Titania and Oberon. Furthermore, detected H2O ice bands are stronger on the leading hemispheres of the classical satellites, and the leading/trailing asymmetry in H2O ice band strengths decreases with distance from Uranus. We hypothesize that the observed distribution of red material and trends in H2O ice band strengths results from infalling dust from Uranian irregular satellites. These dust particles migrate inward on slowly decaying orbits, eventually reaching the classical satellite zone, where they collide primarily with the outer moons. The latitudinal distribution of dust swept up by these moons should be fairly even across their southern and northern hemispheres. However, red material has only been detected over the southern hemispheres of these moons (subsolar latitude 81 S). Consequently, to test whether irregular satellite dust impacts drive the observed enhancement in reddening, we have gathered new ground-based data of the now observable northern hemispheres of these moons (sub-observer latitudes, 17 to 35 N). Our results and analyses indicate that longitudinal and planetocentric trends in reddening and H2O ice band strengths are broadly consistent across both southern and northern latitudes of these moons, thereby supporting our hypothesis. Utilizing a suite of numerical best fit models, we investigate the composition of the reddening agent detected on these moons, finding that both complex organics and amorphous pyroxene match the spectral slopes of our data. We also present spectra that span 2.9 to 4.1 microns, a previously unexplored wavelength range in terms of spectroscopy for the Uranian moons.
We have used the {it Spitzer Space Telescope} to observe two transiting planetary systems orbiting low mass stars discovered in the Kepler Ktwo mission. The system K2-3 (EPIC 201367065) hosts three planets while EPIC 202083828 (K2-26) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with Spitzer will be critical for future observations of these and other Ktwo targets. For K2-3b we find marginally significant evidence for a Transit Timing Variation between the Ktwo and Spitzer epochs.
NASAs Spitzer Infrared Spectrometer (IRS) acquired mid-infrared (5-37 microns) disc-averaged spectra of Uranus very near to its equinox in December 2007. A mean spectrum was constructed from observations of multiple central meridian longitudes, spaced equally around the planet, which has provided the opportunity for the most comprehensive globally-averaged characterisation of Uranus temperature and composition ever obtained (Orton et al., 2014 a [arXiv:1407.2120], b [arXiv:1407.2118]). In this work we analyse the disc-averaged spectra at four separate central meridian longitudes to reveal significant longitudinal variability in thermal emission occurring in Uranus stratosphere during the 2007 equinox. We detect a variability of up to 15% at wavelengths sensitive to stratospheric methane, ethane and acetylene at the ~0.1-mbar level. The tropospheric hydrogen-helium continuum and deuterated methane absorption exhibit a negligible variation (less than 2%), constraining the phenomenon to the stratosphere. Building on the forward-modelling analysis of the global average study, we present full optimal estimation
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا