Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy


Abstract in English

Spintronic devices based on magnetic skyrmions are a promising candidate for next-generation memory applications due to their nanometre-size, topologically-protected stability and efficient current-driven dynamics. Since the recent discovery of room-temperature magnetic skyrmions, there have been reports of current-driven skyrmion displacement on magnetic tracks and demonstrations of current pulse-driven skyrmion generation. However, the controlled annihilation of a single skyrmion at room temperature has remained elusive. Here we demonstrate the deterministic writing and deleting of single isolated skyrmions at room temperature in ferrimagnetic GdFeCo films with a device-compatible stripline geometry. The process is driven by the application of current pulses, which induce spin-orbit torques, and is directly observed using a time resolved nanoscale X-ray imaging technique. We provide a current-pulse profile for the efficient and deterministic writing and deleting process. Using micromagnetic simulations, we also reveal the microscopic mechanism of the topological fluctuations that occur during this process.

Download