No Arabic abstract
Young protoplanetary discs and the outer radii of active galactic nucleii may be subject to gravitational instability and, as a consequence, fall into a `gravitoturbulent state. While in this state, appreciable angular momentum can be transported. Alternatively, the gas may collapse into bound clumps, the progenitors of planets or stars. In this paper, we numerically characterize the properties of 3D gravitoturbulence, focussing especially on its dependence on numerical parameters (resolution, domain size) and its excitation of small-scale dynamics. Via a survey of vertically stratified shearing box simulations with PLUTO and RODEO, we find (a) evidence that certain gravitoturbulent properties are independent of horizontal box size only when the box is larger than $simeq 40 H_0$, where $H_0$ is the height scale, (b) at high resolution, small-scale isotropic turbulence appears off the midplane around $zsimeq 0.5 -1 H_0$, and (c) this small-scale dynamics results from a parametric instability, involving the coupling of inertial waves with a large-scale axisymmetric epicyclic mode. This mode oscillates at a frequency close to $Omega$ and is naturally excited by gravito-turbulence, via a nonlinear process to be determined. The small-scale turbulence we uncover has potential implications for a wide range of disc physics, e.g. turbulent saturation levels, fragmentation, turbulent mixing, and dust settling.
In their early stages, protoplanetary discs are sufficiently massive to undergo gravitational instability (GI). This instability is thought to be involved in mass accretion, planet formation via gas fragmentation, the generation of spiral density waves, and outbursts. A key and very recent area of research is the interaction between the GI and magnetic fields in young protoplanetary discs, in particular whether this instability is able to sustain a magnetic field via a dynamo. We conduct three-dimensional, stratified shearing-box simulations using two independent codes, PLUTO and Athena++, to characterise the GI dynamo in poorly ionised protostellar discs subject to ambipolar diffusion. We find that the dynamo operates across a large range of ambipolar Elssaser number Am (which characterises the strength of ambipolar diffusion) and is particularly strong in the regime Am=10-100, with typical magnetic to thermal energy ratios of order unity. The dynamo is only weakly dependent on resolution (at least for Am <100), box size, and cooling law. The magnetic field is produced by the combination of differential rotation and large-scale vertical roll motions associated with spiral density waves. Our results have direct implications for the dynamo process in young protoplanetary discs and possibly some regions of AGN discs.
Though usually treated in isolation, the magnetorotational and gravitational instabilities (MRI and GI) may coincide at certain radii and evolutionary stages of protoplanetary discs and active galactic nuclei. Their mutual interactions could profoundly influence several important processes, such as accretion variability and outbursts, fragmentation and disc truncation, or large-scale magnetic field production. Direct numerical simulations of both instabilities are computationally challenging and remain relatively unexplored. In this paper, we aim to redress this neglect via a set of 3D vertically stratified shearing-box simulations, combining self-gravity and magnetic fields. We show that gravito-turbulence greatly weakens the zero-net-flux MRI. In the limit of efficient cooling (and thus enhanced GI), the MRI is completely suppressed, and yet strong magnetic fields are sustained by the gravitoturbulence. This turbulent `spiral wave dynamo may have widespread application, especially in galactic discs. Finally, we present preliminary work showing that a strong net-vertical-flux revives the MRI and supports a magnetically dominated state, in which the GI is secondary.
Among the candidates for generating turbulence in accretion discs in situations with low intrinsic ionization the vertical shear instability (VSI) has become an interesting candidate, as it relies purely on a vertical gradient in the angular velocity. Existing simulations have shown that $alpha$-values a few times $10^{-4}$ can be generated. The particle growth in the early planet formation phase is determined by the dynamics of dust particles. Here, we address in particular the efficiency of VSI-turbulence in concentrating particles in order to generate overdensities and low collision velocities. We perform 3D numerical hydrodynamical simulations of accretion discs around young stars that include radiative transport and irradiation from the central star. The motion of particles within a size range of a fraction of mm up to several m is followed using standard drag formula. We confirm that under realistic conditions the VSI is able to generate turbulence in full 3D protoplanetary discs. The irradiated disc shows turbulence within 10 to 60au. The mean radial motion of the gas is such that it is directed inward near the midplane and outward in the surface layers. We find that large particles drift inward with the expected speed, while small particles can experience phases of outward drift. Additionally, the particles show bunching behaviour with overdensities reaching 5 times the average value, which is strongest for dimensionless stopping times around unity. Particles in a VSI-turbulent discs are concentrated in large scale turbulent eddies and show low relative speeds that allow for growing collisions. The reached overdensities will also allow for the onset streaming instabilities further enhancing particle growth. The outward drift for small particles at higher disk elevations allows for the transport of processed high temperature material in the Solar System to larger distances.
The intermittent small-scale structure of turbulence governs energy dissipation in many astrophysical plasmas and is often believed to have universal properties for sufficiently large systems. In this work, we argue that small-scale turbulence in accretion disks is universal in the sense that it is insensitive to the magnetorotational instability (MRI) and background shear, and therefore indistinguishable from standard homogeneous magnetohydrodynamic (MHD) turbulence at small scales. We investigate the intermittency of current density, vorticity, and energy dissipation in numerical simulations of incompressible MHD turbulence driven by the MRI in a shearing box. We find that the simulations exhibit a similar degree of intermittency as in standard MHD turbulence. We perform a statistical analysis of intermittent dissipative structures and find that energy dissipation is concentrated in thin sheet-like structures that span a wide range of scales up to the box size. We show that these structures exhibit strikingly similar statistical properties to those in standard MHD turbulence. Additionally, the structures are oriented in the toroidal direction with a characteristic tilt of approximately 17.5 degrees, implying an effective guide field in that direction.
The streaming instability (SI) has been extensively studied in the linear and non-linear regimes as a mechanism to concentrate solids and trigger planetesimal formation in the midplane of protoplanetary discs. A related dust settling instability (DSI) applies to particles while settling towards the midplane. The DSI has previously been studied in the linear regime, with predictions that it could trigger particle clumping away from the midplane. This work presents a range of linear calculations and non-linear simulations, performed with FARGO3D, to assess conditions for DSI growth. We expand on previous linear analyses by including particle size distributions and performing a detailed study of the amount of background turbulence needed to stabilize the DSI. When including binned size distributions, the DSI often produces converged growth rates with fewer bins than the standard SI. With background turbulence, we find that the most favorable conditions for DSI growth are weak turbulence, characterized by $alpha lesssim 10^{-6}$ with intermediate-sized grains that settle from one gas scale-height. These conditions could arise during a sudden decrease in disc turbulence following an accretion outburst. Ignoring background turbulence, we performed a parameter survey of local 2D DSI simulations. Particle clumping was either weak or occurred slower than particles settle. Clumping was reduced by a factor of two in a comparison 3D simulation. Overall, our results strongly disfavor the hypothesis that the DSI significantly promotes planetesimal formation. Non-linear simulations of the DSI with different numerical methods could support or challenge these findings.