Real epidemic spreading networks often composed of several kinds of networks interconnected with each other, and the interrelated networks have the different topologies and epidemic dynamics. Moreover, most human diseases are derived from animals, and the zoonotic infections always spread on interconnected networks. In this paper, we consider the epidemic spreading on one-way circular-coupled network consist of three interconnected subnetworks. Here, two one-way three-layer circular interactive networks are established by introducing the heterogeneous mean-field approach method, then we get the basic reproduction numbers and prove the global stability of the disease-free equilibrium and endemic equilibrium of the models. Through mathematical analysis and numerical simulations, it is found that the basic reproduction numbers $R_0$ of the two models are dependent on the infection rates, infection periods, average degrees and degree ratios. In the first model, the network structures of the inner contact patterns have a bigger impact on $R_0$ than that of the cross contact patterns. Under the same contact pattern, the internal infection rates have greater influence on $R_0$ than the cross-infection rates. In the second model, the disease prevails in a heterogeneous network has a greater impact on $R_0$ than the disease from a homogeneous network, and the infections among the three subnetworks all play a important role in the propagation process. Numerical examples verify and expand these theoretical results very well.