Gravitational wave searches for ultralight bosons with LIGO and LISA


Abstract in English

Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational energy to trigger the growth of a bosonic condensate. Possible observational imprints of these boson clouds include (i) direct detection of the nearly monochromatic (resolvable or stochastic) gravitational waves emitted by the condensate, and (ii) statistically significant evidence for the formation of holes at large spins in the spin versus mass plane (sometimes also referred to as Regge plane) of astrophysical black holes. In this work, we focus on the prospects of LISA and LIGO detecting or constraining scalars with mass in the range $m_sin [10^{-19},,10^{-15}]$ eV and $m_sin [10^{-14},,10^{-11}]$ eV, respectively. Using astrophysical models of black-hole populations calibrated to observations and black-hole perturbation theory calculations of the gravitational emission, we find that, in optimistic scenarios, LIGO could observe a stochastic background of gravitational radiation in the range $m_sin [2times 10^{-13}, 10^{-12}]$ eV, and up to $10^4$ resolvable events in a $4$-year search if $m_ssim 3times 10^{-13},{rm eV}$. LISA could observe a stochastic background for boson masses in the range $m_sin [5times 10^{-19}, 5times 10^{-16}]$, and up to $sim 10^3$ resolvable events in a $4$-year search if $m_ssim 10^{-17},{rm eV}$. LISA could further measure spins for black-hole binaries with component masses in the range $[10^3, 10^7]~M_odot$, which is not probed by traditional spin-measurement techniques. A statistical analysis of the spin distribution of these binaries could either rule out scalar fields in the mass range $sim [4 times 10^{-18}, 10^{-14}]$ eV, or measure $m_s$ with ten percent accuracy if light scalars in the mass range $sim [10^{-17}, 10^{-13}]$ eV exist.

Download