Hidden peculiar magnetic anisotropy at the interface in a ferromagnetic perovskite-oxide heterostructure


Abstract in English

Understanding and controlling the interfacial magnetic properties of ferromagnetic thin films are crucial for spintronic device applications. However, using conventional magnetometry, it is difficult to detect them separately from the bulk properties. Here, by utilizing tunneling anisotropic magnetoresistance in a single-barrier heterostructure composed of La0.6Sr0.4MnO3 (LSMO)/ LaAlO3 (LAO)/ Nb-doped SrTiO3 (001), we reveal the presence of a peculiar strong two-fold magnetic anisotropy (MA) along the [110]c direction at the LSMO/LAO interface, which is not observed in bulk LSMO. This MA shows unknown behavior that the easy magnetization axis rotates by 90{deg} at an energy of 0.2 eV below the Fermi level in LSMO. We attribute this phenomenon to the transition between the eg and t2g bands at the LSMO interface. Our finding and approach to understanding the energy dependence of the MA demonstrate a new possibility of efficient control of the interfacial magnetic properties by controlling the band structures of oxide heterostructures.

Download