No Arabic abstract
The use of semi-autonomous and autonomous robotic assistants to aid in care of the elderly is expected to ease the burden on human caretakers, with small-stage testing already occurring in a variety of countries. Yet, it is likely that these robots will need to request human assistance via teleoperation when domain expertise is needed for a specific task. As deployment of robotic assistants moves to scale, mapping these requests for human aid to the teleoperators themselves will be a difficult online optimization problem. In this paper, we design a system that allocates requests to a limited number of teleoperators, each with different specialities, in an online fashion. We generalize a recent model of online job scheduling with a worst-case competitive-ratio bound to our setting. Next, we design a scalable machine-learning-based teleoperator-aware task scheduling algorithm and show, experimentally, that it performs well when compared to an omniscient optimal scheduling algorithm.
Human beings, even small children, quickly become adept at figuring out how to use applications on their mobile devices. Learning to use a new app is often achieved via trial-and-error, accelerated by transfer of knowledge from past experiences with like apps. The prospect of building a smarter smartphone - one that can learn how to achieve tasks using mobile apps - is tantalizing. In this paper we explore the use of Reinforcement Learning (RL) with the goal of advancing this aspiration. We introduce an RL-based framework for learning to accomplish tasks in mobile apps. RL agents are provided with states derived from the underlying representation of on-screen elements, and rewards that are based on progress made in the task. Agents can interact with screen elements by tapping or typing. Our experimental results, over a number of mobile apps, show that RL agents can learn to accomplish multi-step tasks, as well as achieve modest generalization across different apps. More generally, we develop a platform which addresses several engineering challenges to enable an effective RL training environment. Our AppBuddy platform is compatible with OpenAI Gym and includes a suite of mobile apps and benchmark tasks that supports a diversity of RL research in the mobile app setting.
Many machine learning frameworks have been proposed and used in wireless communications for realizing diverse goals. However, their incapability of adapting to the dynamic wireless environment and tasks and of self-learning limit their extensive applications and achievable performance. Inspired by the great flexibility and adaptation of primate behaviors due to the brain cognitive mechanism, a unified cognitive learning (CL) framework is proposed for the dynamic wireless environment and tasks. The mathematical framework for our proposed CL is established. Using the public and authoritative dataset, we demonstrate that our proposed CL framework has three advantages, namely, the capability of adapting to the dynamic environment and tasks, the self-learning capability and the capability of good money driving out bad money by taking modulation recognition as an example. The proposed CL framework can enrich the current learning frameworks and widen the applications.
Primal heuristics play a crucial role in exact solvers for Mixed Integer Programming (MIP). While solvers are guaranteed to find optimal solutions given sufficient time, real-world applications typically require finding good solutions early on in the search to enable fast decision-making. While much of MIP research focuses on designing effective heuristics, the question of how to manage multiple MIP heuristics in a solver has not received equal attention. Generally, solvers follow hard-coded rules derived from empirical testing on broad sets of instances. Since the performance of heuristics is instance-dependent, using these general rules for a particular problem might not yield the best performance. In this work, we propose the first data-driven framework for scheduling heuristics in an exact MIP solver. By learning from data describing the performance of primal heuristics, we obtain a problem-specific schedule of heuristics that collectively find many solutions at minimal cost. We provide a formal description of the problem and propose an efficient algorithm for computing such a schedule. Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
This paper introduces the Intentional Unintentional (IU) agent. This agent endows the deep deterministic policy gradients (DDPG) agent for continuous control with the ability to solve several tasks simultaneously. Learning to solve many tasks simultaneously has been a long-standing, core goal of artificial intelligence, inspired by infant development and motivated by the desire to build flexible robot manipulators capable of many diverse behaviours. We show that the IU agent not only learns to solve many tasks simultaneously but it also learns faster than agents that target a single task at-a-time. In some cases, where the single task DDPG method completely fails, the IU agent successfully solves the task. To demonstrate this, we build a playroom environment using the MuJoCo physics engine, and introduce a grounded formal language to automatically generate tasks.
Reinforcement Learning (RL) is a promising approach for solving various control, optimization, and sequential decision making tasks. However, designing reward functions for complex tasks (e.g., with multiple objectives and safety constraints) can be challenging for most users and usually requires multiple expensive trials (reward function hacking). In this paper we propose a specification language (Inkling Goal Specification) for complex control and optimization tasks, which is very close to natural language and allows a practitioner to focus on problem specification instead of reward function hacking. The core elements of our framework are: (i) mapping the high level language to a predicate temporal logic tailored to control and optimization tasks, (ii) a novel automaton-guided dense reward generation that can be used to drive RL algorithms, and (iii) a set of performance metrics to assess the behavior of the system. We include a set of experiments showing that the proposed method provides great ease of use to specify a wide range of real world tasks; and that the reward generated is able to drive the policy training to achieve the specified goal.