Do you want to publish a course? Click here

Numerical simulations of quiet Sun magnetic fields seeded by Biermann battery

218   0   0.0 ( 0 )
 Added by Elena Khomenko
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic fields of the quiet Sun cover at any time more than 90% of its surface and their magnetic energy budget is crucial to explain the thermal structure of the solar atmosphere. One of the possible origins of these fields is due to the action of local dynamo in the upper convection zone of the Sun. Existing simulations of the local solar dynamo require an initial seed field, and sufficiently high spatial resolution, in order to achieve the amplification of the seed field to the observed values in the quiet Sun. Here we report an alternative model of seeding based on the action of the Bierman battery effect. This effect generates a magnetic field due to the local imbalances in electron pressure in the partially ionized solar plasma. We show that the battery effect self-consistently creates from zero an initial seed field of a strength of the order of micro G, and together with dynamo amplification, allows the generation of quiet Sun magnetic fields of a similar strength to those from solar observations.



rate research

Read More

This work reviews our understanding of the magnetic fields observed in the quiet Sun. The subject has undergone a major change during the last decade (quiet revolution), and it will remain changing since the techniques of diagnostic employed so far are known to be severely biased. Keeping these caveats in mind, our work covers the main observational properties of the quiet Sun magnetic fields: magnetic field strengths, unsigned magnetic flux densities, magnetic field inclinations, as well as the temporal evolution on short time-scales (loop emergence), and long time-scales (solar cycle). We also summarize the main theoretical ideas put forward to explain the origin of the quiet Sun magnetism. A final prospective section points out various areas of solar physics where the quiet Sun magnetism may have an important physical role to play (chromospheric and coronal structure, solar wind acceleration, and solar elemental abundances).
We present high-precision spectro-polarimetric data with high spatial resolution (0.4$$) of the very quiet Sun at 1.56$mu$m obtained with the GREGOR telescope to shed some light on this complex magnetism. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak ($sim$150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area $sim$50% are two-lobed Stokes $V$ profiles, meaning that 23% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50% based on the regular profiles. Therefore, 12% of the field of view harbour hG fields with filling factors typically below 30%. At our present spatial resolution, 70% of the pixels apparently are non-magnetised.
Three-dimensional magnetohydrodynamic simulations of the surface layers of the Sun intrinsically produce a predominantly horizontal magnetic field in the photosphere. This is a robust result in the sense that it arises from simulations with largely different initial and boundary conditions for the magnetic field. While the disk-center synthetic circular and linear polarization signals agree with measurements from Hinode, their center-to-limb variation sensitively depends on the height variation of the horizontal and the vertical field component and they seem to be at variance with the observed behavior.
We study the relation between mesogranular flows, convectively driven sinks and magnetic fields using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board Sunrise. We obtain the horizontal velocity flow fields of two quiet-Sun regions (31.2 $times$ 31.2 Mm$^{2}$) via local correlation tracking. Mesogranular lanes and the central position of sinks are identified using Lagrange tracers. We find $6.7times10^{-2}$ sinks per Mm$^{2}$ in the two observed regions. The sinks are located at the mesogranular vertices and turn out to be associated with (1) horizontal velocity flows converging to a central point and (2) long-lived downdrafts. The spatial distribution of magnetic fields in the quiet Sun is also examined. The strongest magnetic fields are preferentially located at sinks. We find that 40 % of the pixels with longitudinal component of the magnetic field stronger than 500 G are located in the close neighborhood of sinks. In contrast, the small-scale magnetic loops detected by Mart{i}nez Gonz{a}lez et al. in the same two observed areas do not show any preferential distribution at mesogranular scales. The study of individual examples reveals that sinks can play an important role in the evolution of quiet-Sun magnetic features.
Vertical magnetic fields have been known to exist in the internetwork region for decades, while the properties of horizontal magnetic fields have recently been extensively investigated with textit{Hinode}. Vertical and horizontal magnetic fields in the internetwork region are considered to be separate entities and have thus far not been investigated in a unified way. We discover clear positional association between the vertical and horizontal magnetic fields in the internetwork region with textit{Hinode}. Essentially all of the horizontal magnetic patches are associated with the vertical magnetic patches. Alternatively, half of the vertical magnetic patches accommodate the horizontal magnetic patches. These horizontal patches are located around the borders of the vertical patches. The intrinsic magnetic field strength as obtained with the Stokes $V$ line ratio inside the horizontal patches is weak, and is in sub-equipartition field regime ($B<700$ G), while the field strength outside the horizontal patches ranges from weak to strong (kG) fields. Vertical magnetic patches are known to be concentrated on mesogranular and supergranular boundaries, while the horizontal magnetic patches are found only on the mesogranular boundaries. These observations provide us with new information on the origin of the vertical and horizontal internetwork magnetic fields, in a unified way. We conjecture that internetwork magnetic fields are provided by emergence of small-scale flux tubes with bipolar footpoints, and the vertical magnetic fields of the footpoints are intensified to kG fields due to convective collapse. Resultant strong vertical fields are advected by the supergranular flow, and eventually form the network fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا