Do you want to publish a course? Click here

A group theoretical route to deterministic Weyl points in chiral photonic lattices

105   0   0.0 ( 0 )
 Added by Matthias Saba
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Classical topological phases derived from point degeneracies in photonic bandstructures show intriguing and unique behaviour. Previously identified exceptional points are based on accidental degeneracies and subject to engineering on a case-by-case basis. Here we show that symmetry induced (deterministic) pseudo Weyl points with non-trivial topology and hyper-conic dispersion exist at the centre of the Brillouin zone of chiral cubic systems. We establish the physical implications by means of a $P2_13$ sphere packing, realised as a nano plasmonic system and a photonic crystal.



rate research

Read More

108 - Shan Xiao , Shiyao Wu , Xin Xie 2021
Chiral quantum optics has attracted considerable interest in the field of quantum information science. Exploiting the spin-polarization properties of quantum emitters and engineering rational photonic nanostructures has made it possible to transform information from spin to path encoding. Here, compact chiral photonic circuits with deterministic circularly polarized chiral routing and beamsplitting are demonstrated using two laterally adjacent waveguides coupled with quantum dots. Chiral routing arises from the electromagnetic field chirality in waveguide, and beamsplitting is obtained via the evanescent field coupling. The spin- and position-dependent directional spontaneous emission are achieved by spatially selective micro-photoluminescence measurements, with a chiral contrast of up to 0.84 in the chiral photonic circuits. This makes a significant advancement for broadening the application scenarios of chiral quantum optics and developing scalable quantum photonic networks.
Weyl points are the degenerate points in three-dimensional momentum space with nontrivial topological phase, which are usually realized in classical system with structure and symmetry designs. Here we proposed a one-dimensional layer-stacked photonic crystal using anisotropic materials to realize ideal type-II Weyl points without structure designs. The topological transition from two Dirac points to four Weyl points can be clearly observed by tuning the twist angle between layers. Besides, on the interface between the photonic type-II Weyl material and air, gappless surface states have also been demonstrated in an incomplete bulk bandgap. By breaking parameter symmetry, these ideal type-II Weyl points at the same frequency would transform into the non-ideal ones, and exhibit topological surface states with single group velocity. Our work may provide a new idea for the realization of photonic Weyl points or other semimetal phases by utilizing naturally anisotropic materials.
We study the group velocity of light in layer-by-layer chiral photonic crystals composed of dielectrics and metals. Through studying the band structures with an extended-zone scheme that is given by a Fourier analysis, we show the existence of negative group velocity in the proposed chiral structures. The physical mechanism is interpreted with the help of a simplified model that has an analytical solution. The iso-frequency contours of the photonic band structure suggest that the negative group velocity can lead to either positive or negative refraction, depending on the orientation of the medium interface. We propose a feasible realization of such kind of photonic crystals. Computational results on the proposed realization are consistent with that of the simplified models.
103 - C. F. Fong , Y. Ota , Y. Arakawa 2021
The H1 photonic crystal cavity supports two degenerate dipole modes of orthogonal linear polarization which could give rise to circularly polarized fields when driven with a $pi$/$2$ phase difference. However, fabrication errors tend to break the symmetry of the cavity which lifts the degeneracy of the modes, rendering the cavity unsuitable for supporting circular polarization. We demonstrate numerically, a scheme that induces chirality in the cavity modes, thereby achieving a cavity that supports intrinsic circular polarization. By selectively modifying two air holes around the cavity, the dipole modes could interact via asymmetric coherent backscattering which is a non-Hermitian process. With suitable air hole parameters, the cavity modes approach the exceptional point, coalescing in frequencies and linewidths as well as giving rise to significant circular polarization close to unity. The handedness of the chirality can be selected depending on the choice of the modified air holes. Our results highlight the prospect of using the H1 photonic crystal cavity for chiral-light matter coupling in applications such as valleytronics, spin-photon interfaces and the generation of single photons with well-defined spins.
We propose an exactly solvable waveguide lattice incorporating inhomogeneous coupling coefficient. This structure provides a classical analogue to the squeezed number and squeezed coherent intensity distribution in quantum optics where the propagation length plays the role of squeezed amplitude. The intensity pattern is obtained in a closed form for an arbitrary distribution of the initial beam profile. We have also investigated the phase transition to the spatial Bloch-like oscillations by adding a linear gradient to the propagation constant of each waveguides ($ alpha $). Our analytical results show that the Bloch-like oscillations appear above a critical value for the linear gradient of propagation constant ($ alpha > alpha_{c} $). The phase transition (in the propagation properties of the waveguide) is a result of competition between discrete and Bragg diffraction. Moreover, the light intensity decay algebraically along each waveguide at the critical point while it falls off exponentially below the critical point ($ alpha < alpha_{c} $).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا