Do you want to publish a course? Click here

Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats

148   0   0.0 ( 0 )
 Added by Stefanie Stalter
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity. We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation boxes. We also argue that if colloidal systems are considered as opposed to atomistic systems, the gap between microscopic and macroscopic simulations regarding time and length scales is significantly smaller. We also propose a novel reduced-order technique for the coupling to the macroscopic solver, which allows us to approximate a non-linear stress-strain relation efficiently and thus further reduce computational effort of microscopic simulations.



rate research

Read More

Granular impact -- the dynamic intrusion of solid objects into granular media -- is widespread across scientific and engineering applications including geotechnics. Existing approaches for simulating granular impact dynamics have relied on either a pure discrete method or a pure continuum method. Neither of these methods, however, is deemed optimal from the computational perspective. Here, we introduce a hybrid continuum-discrete approach, built on the coupled material-point and discrete-element method (MP-DEM), for simulating granular impact dynamics with unparalleled efficiency. To accommodate highly complex solid-granular interactions, we enhance the existing MP-DEM formulation with three new ingredients: (i) a robust contact algorithm that couples the continuum and discrete parts without any interpenetration under extreme impact loads, (ii) large deformation kinematics employing multiplicative elastoplasticity, and (iii) a trans-phase constitutive relation capturing gasification of granular media. For validation, we also generate experimental data through laboratory measurement of the impact dynamics of solid spheres dropped onto dry sand. Simulation of the experiments shows that the proposed approach can well reproduce granular impact dynamics in terms of impact forces, intrusion depths, and splash patterns. Further, through parameter studies on material properties, model formulations, and numerical schemes, we identify key factors for successful continuum-discrete simulation of granular impact dynamics.
Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.
90 - Gerhard Besold 2000
Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the compressibility and the diffusion coefficient. We assess the quality of these integration schemes, including variants based on a recently suggested self-consistent approach, and examine their relative performance. Implications of integrator-induced effects are discussed.
Accurate prediction of a gas solubility in a liquid is crucial in many areas of chemistry, and a detailed understanding of the molecular mechanism of the gas solvation continues to be an active area of research. Here, we extend the idea of constant chemical potential molecular dynamics (C{mu}MD) approach to the calculation of the gas solubility in the liquid under constant gas chemical potential conditions. As a representative example, we utilize this method to calculate the isothermal solubility of carbon dioxide in water. Additionally, we provide microscopic insight into the mechanism of solvation that preferentially occurs in areas of the surface where the hydrogen network is broken.
82 - Francisco Orts 2020
The analysis of the dynamics of tracer particles in a complex bath can provide valuable information about the microscopic behaviour of the bath. In this work, we study the dynamics of a forced tracer in a colloidal bath by means of Langevin dynamics simulations and a theory model within continuum mechanics. In the simulations, the bath is comprised by quasi-hard spheres with a volume fraction of 50% immersed in a featureless quiescent solvent, and the tracer is pulled with a constant small force (within the linear regime). The theoretical analysis is based on the Navier Stokes equation, where a term proportional to the velocity arises from coarse-graining the friction of the colloidal particles with the solvent. As a result, the final equation is similar to the Brinkman model, although the interpretation is different. A length scale appears in the model, 1/k_0, where the transverse momentum transport crosses over to friction with the solvent. The effective friction coefficient experienced by the tracer grows with the tracer size faster than the prediction from Stokes law. Additionally, the velocity profiles in the bath decay faster than in a Newtonian fluid. The comparison between simulations and theory points to a boundary condition of effective partial slip at the tracer surface. We also study the fluctuations in the tracer position, showing that it reaches diffusion at long times, with a subdiffusive regime at intermediate times. The diffusion coefficient, obtained from the long-time slope of the mean squared displacement, fulfills the Stokes-Einstein relation with the friction coefficient calculated from the steady tracer velocity, confirming the validity of the linear response formalism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا