We compute the effects of magnon-phonon coupling on the indirect K-edge bimagnon resonant inelastic x-ray scattering (RIXS) intensity spectrum of a square lattice Heisenberg antiferromagnet. We analyze the effects of competing nearest and next--nearest magnetic and magnon-phonon coupling interaction in the RIXS spectrum, for both the antiferromagnetic (AF) and the collinear antiferromagnetic (CAF) phases of the model. Utilizing the Dyson-Maleev representation of spin operators, the Bethe-Salpeter ladder approximation scheme for the bimagnon interacting channel, and considering the lowest order magnon-phonon-magnon scattering interaction we highlight distinct features in the X-ray spectrum. Considering damping effects, arising due to the presence of phonons, we find that in the AF phase the RIXS intensity spectrum attains a maximum value primarily localized around the K $left(pmfrac{pi}{2}, pm frac{pi}{2}right)$ - point. For the CAF phase the intensity is broadly distributed with a significant scattering intensity located around the Y $left(pmfrac{pi}{2}, 0right)$ - point. Furthermore, in the CAF phase for suitable anisotropy, nearest-, and next-nearest neighbor interaction parameters the phonon effects can manifest itself as a distinct peak both below and above the bimagnon peak. Such a feature is in contrast to the antiferromagnetic spectrum where the effect due to the phonon peak was located consistently beyond the bimagnon peak in the high energy end of the spectrum. Additionally, in the CAF phase we find the RIXS bimagnon-phonon spectrum to be more sensitive to anisotropy compared to its antiferromagnetic counterpart. We conclude that the ultimate effect of magnon-phonon effects in the indirect K-edge RIXS spectrum, in both the antiferromagnetic and the collinear antiferromagnetic phase, is an observable effect.