Do you want to publish a course? Click here

A Hot Downflowing Model Atmosphere For Umbral Flashes And The Physical Properties Of Their Dark Fibrils

104   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform NLTE



rate research

Read More

Context. The solar chromosphere and the lower transition region is believed to play a crucial role in the heating of the solar corona. Models that describe the chromosphere (and the lower transition region), accounting for its highly dynamic and structured character are, so far, found to be lacking. This is partly due to the breakdown of complete frequency redistribution in the chromospheric layers and also because of the difficulty in obtaining complete sets of observations that adequately constrain the solar atmosphere at all relevant heights. Aims. We aim to obtain semi-empirical model atmospheres that reproduce the features of the Mg II h&k line profiles that sample the middle chromosphere with focus on a sunspot. Methods. We use spectropolarimetric observations of the Ca II 8542 A spectra obtained with the Swedish 1-m Solar Telescope (SST) and use NICOLE
Small-scale umbral brightenings (SSUBs), umbral microjets, spikes or short dynamic fibrils (SDFs), and umbral dark fibrils are found in any observation of the chromosphere with sufficient spatial resolution. We study the spatial and spectral co-evolution of SDFs, SSUBs, and umbral flashes in Ca II 8542 spectral profiles. We produce models that generate the spectral profiles for all classes of features using non-LTE radiative transfer with a recent version of the NICOLE inversion code. We find that both bright (SSUBs) and dark (SDFs) structures are described with a continuous feature in the parameter space that is distinct from the surroundings even in pixel-by-pixel
Umbral flashes (UF) and running penumbral waves (RPWs) in sunspot chromospheres leave a dramatic imprint in the intensity profile of the Ca II 854.2 nm line. Recent studies have focussed on also explaining the observed polarization profiles, that show even more dramatic variations during the passage of these shock fronts. While most of these variations can be explained with an almost constant magnetic field as a function of time, several studies have reported changes in the inferred magnetic field strength during UF phases. In this study we investigate the origin of these periodic variations of the magnetic field strength by analyzing a time-series of high temporal cadence observations acquired in the Ca II line with the CRISP instrument at the Swedish 1-m Solar Telescope. In particular, we analyze how the inferred geometrical height scale changes between quiescent and UF phases, and whether those changes are enough to explain the observed changes in $B$. We have performed non-LTE data
Umbral flashes are periodic brightness increases routinely observed in the core of chromospheric lines within sunspot umbrae and are attributed to propagating shock fronts. In this work we quantify the shock heating energy of these umbral flashes using observations in the near infrared He I triplet obtained on 2014 December 7 with the SpectroPolarimetric Imager for the Energetic Sun (SPIES), which is a novel integral field unit spectrograph at the Dunn Solar Telescope. We determine the shock properties (the Mach number and the propagation speed) by fitting the measured He I spectral profiles with a theoretical radiative transfer model consisting of two constant property atmospheric slabs whose temperatures and macroscopic velocities are constrained by the Rankine-Hugoniot relations. From the Mach number, the shock heating energy per unit mass of plasma is derived to be 2 x 10^{10} erg g^{-1}, which is insufficient to maintain the umbral chromosphere. In addition, we find that the shocks propagate upward with the sound speed and the Mach number does not depend on the temperature upstream of the shocks. The latter may imply suppression of the amplification of the Mach number due to energy loss of the shocks.
102 - Lei Ni , Yajie Chen , Hardi Peter 2020
UV bursts and Ellerman bombs are transient brightenings observed in the low solar atmospheres of emerging flux regions. Observations have discovered the cospatial and cotemporal EBs and UV bursts, and their formation mechanisms are still not clear. The multi-thermal components with a large temperature span in these events challenge our understanding of magnetic reconnection and heating mechanisms in the low solar atmosphere. We have studied magnetic reconnection between the emerging and background magnetic fields. The initial plasma parameters are based on the C7 atmosphere model. After the current sheet with dense photosphere plasma is emerged to $0.5$ Mm above the solar surface, plasmoid instability appears. The plasmoids collide and coalesce with each other, which makes the plasmas with different densities and temperatures mixed up in the turbulent reconnection region. Therefore, the hot plasmas corresponding to the UV emissions and colder plasmas corresponding to the emissions from other wavelenghts can move together and occur at about the same height. In the meantime, the hot turbulent structures basically concentrate above $0.4$ Mm, whereas the cool plasmas extend to much lower heights to the bottom of the current sheet. These phenomena are consistent with the observations of Chen et al. 2019, ApJL. The synthesized Si IV line profiles are similar to the observed one in UV bursts, the enhanced wing of the line profiles can extend to about $100$ km s$^{-1}$. The differences are significant among the numerical results with different resolutions, which indicate that the realistic magnetic diffusivity is crucial to reveal the fine structures and realistic plasmas heating in these reconnection events. Our results also show that the reconnection heating contributed by ambipolar diffusion in the low chromosphere around the temperature minimum region is not efficient.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا