Pechukas-Yukawa approach to the evolution of the quantum state of a parametrically perturbed system


Abstract in English

We consider the evolution of a quantum state of a Hamiltonian which is parametrically perturbed via a term proportional to the adiabatic parameter lambda (t). Starting with the Pechukas-Yukawa mapping of the energy eigenvalues evolution on a generalised Calogero-Sutherland model of 1D classical gas, we consider the adiabatic approximation with two different expansions of the quantum state in powers of dlambda/dt and compare them with a direct numerical simulation. We show that one of these expansions (Magnus series) is especially convenient for the description of non-adiabatic evolution of the system. Applying the expansion to the exact cover 3-satisfability problem, we obtain the occupation dynamics which provides insight on the population of states.

Download