Quantum lattice Boltzmann study of random-mass Dirac fermions in one dimension


Abstract in English

We study the time evolution of quenched random-mass Dirac fermions in one dimension by quantum lattice Boltzmann simulations. For nonzero noise strength, the diffusion of an initial wave packet stops after a finite time interval, reminiscent of Anderson localization. However, instead of exponential localization we find algebraically decaying tails in the disorder-averaged density distribution. These qualitatively match $propto x^{-3/2}$ decay, which has been predicted by analytic calculations based on zero-energy solutions of the Dirac equation.

Download