No Arabic abstract
Three dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington Rotations (CR 2054$-$2153) during 2007/03$-$2014/08 using the spherically symmetric method from polarized white-light observations with the STEREO/COR1. These three-dimensional electron density distributions are validated by comparison with similar density models derived using other methods such as tomography and a MHD model as well as using data from SOHO/LASCO-C2. Uncertainties in the estimated total mass of the global corona are analyzed based on differences between the density distributions for COR1-A and -B. Long-term variations of coronal activity in terms of the global and hemispheric average electron densities (equivalent to the total coronal mass) reveal a hemispheric asymmetry during the rising phase of Solar Cycle 24, with the northern hemisphere leading the southern hemisphere by a phase shift of 7$-$9 months. Using 14-CR (~13-month) running averages, the amplitudes of the variation in average electron density between Cycle 24 maximum and Cycle 23/24 minimum (called the modulation factors) are found to be in the range of 1.6$-$4.3. These modulation factors are latitudinally dependent, being largest in polar regions and smallest in the equatorial region. These modulation factors also show a hemispheric asymmetry, being somewhat larger in the southern hemisphere. The wavelet analysis shows that the short-term quasi-periodic oscillations during the rising and maximum phases of Cycle 24 have a dominant period of 7$-$8 months. In addition, it is found that the radial distribution of mean electron density for streamers at Cycle 24 maximum is only slightly larger (by ~30%) than at cycle minimum.
Coronal Mass Ejections (CMEs) contributes to the perturbation of solar wind in the heliosphere. Thus, depending on the different phases of the solar cycle and the rate of CME occurrence, contribution of CMEs to solar wind parameters near the Earth changes. In the present study, we examine the long term occurrence rate of CMEs, their speeds, angular widths and masses. We attempt to find correlation between near sun parameters, determined using white light images from coronagraphs, with solar wind measurements near the Earth from in-situ instruments. Importantly, we attempt to find what fraction of the averaged solar wind mass near the Earth is provided by the CMEs during different phases of the solar cycles.
In this article, we report an evidence of very high and statistically significant relationship between hemispheric asymmetry in solar coronal rotation rate and solar activity. Our approach is based on cross correlation of hemispheric asymmetry index (AI) in rotation rate with annual solar activity indicators. To obtain hemispheric asymmetry in solar rotation rate, we use solar full disc (SFD) images at 30.4 nm, 19.5 nm, and 28.4 nm wavelengths for 24th Solar Cycle i.e., for the period from 2008 to 2018, as recorded by the Solar Terrestrial Relations Observatory (STEREO) space mission. Our analysis shows that hemispheric asymmetry in rotation rate is high during the solar maxima from 2011 to 2014. On the other hand, hemispheric asymmetry drops gradually on both sides (i.e., from 2008 to 2011 and from 2014 to 2018). The results show that asymmetry index (AI) leads sunspot numbers by ~1.56 years. This gives a clear indication that hemispheric asymmetry triggers the formation of sunspots working together with the differential rotation of the Sun.
The onset of the Rush to the Poles of polar-crown prominences and their associated coronal emission is a harbinger of solar maximum. Altrock (Solar Phys. 216, 343, 2003) showed that the Rush was well-observed at 1.15 Ro in the Fe XIV corona at the Sacramento Peak site of the National Solar Observatory prior to the maxima of Cycles 21 to 23. The data show that solar maximum in those cycles occurred when the center line of the Rush reached a critical latitude of 76 +- 2{deg}. Furthermore, in the previous three cycles solar maximum occurred when the highest number of Fe XIV emission features per day (averaged over 365 days and both hemispheres) first reached latitudes 20 +- 1.7{deg}. Cycle 24 displays an intermittent Rush that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6{deg}/yr was found in the north, compared to an average of 9.4 +- 1.7 {deg}/yr in the previous cycles. An early fit to the Rush would have reached 76{deg} at 2014.6. However, in 2010 the slope increased to 7.5{deg}/yr (an increase did not occur in the previous three cycles). Extending that rate to 76 +- 2{deg} indicates that the solar maximum in the northern hemisphere already occurred at 2011.6 +- 0.3. In the southern hemisphere the Rush to the Poles, if it exists, is very poorly defined. A linear fit to several maxima would reach 76{deg} in the south at 2014.2. In 1999, persistent Fe XIV coronal emission known as the extended solar cycle appeared near 70{deg} in the north and began migrating towards the equator at a rate 40% slower than the previous two solar cycles. However, in 2009 and 2010 an acceleration occurred. Currently the greatest number of emission features is at 21{deg} in the North and 24{deg}in the South. This indicates that solar maximum is occurring now in the North but not yet in the South.
Coronal waves are large-scale disturbances often driven by coronal mass ejections (CMEs). We investigate a spectacular wave event on 7 March 2012, which is associated with an X5.4 flare (SOL2012-03-07). By using a running center-median (RCM) filtering method for the detection of temporal variations in extreme ultraviolet (EUV) images, we enhance the EUV disturbance observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) onboard the PRoject for Onboard Autonomy 2 (PROBA2). In coronagraph images, a halo front is observed to be the upper counterpart of the EUV disturbance. Based on the EUV and coronagraph images observed from three different perspectives, we have made three-dimensional (3D) reconstructions of the wave surfaces using a new mask-fitting method. The reconstructions are compared with those obtained from forward-fitting methods. We show that the mask fitting method can reflect the inhomogeneous coronal medium by capturing the concave shape of the shock wave front. Subsequently, we trace the developing concave structure and derive the deprojected wave kinematics. The speed of the 3D-wave nose increases from a low value below a few hundred $mathrm{km,s^{-1}}$ to a maximum value of about 3800 $mathrm{km,s^{-1}}$, and then slowly decreases afterwards. The concave structure starts to decelerate earlier and has significantly lower speeds than those of the wave nose. We also find that the 3D-wave in the extended corona has a much higher speed than the speed of EUV disturbances across the solar disk.
Low and mid-latitude coronal holes (CHs) observed on the Sun during the current solar activity minimum (from September 21, 2006, Carrington rotation (CR) 2048, until June 26, 2009 (CR 2084)) were analyzed using {it SOHO}/EIT and STEREO-A SECCHI EUVI data. From both the observations and Potential Field Source Surface (PFSS) modeling, we find that the area occupied by CHs inside a belt of $pm 40^circ$ around the solar equator is larger in the current 2007 solar minimum relative to the similar phase of the previous 1996 solar minimum. The enhanced CH area is related to a recurrent appearance of five persistent CHs, which survived during 7-27 solar rotations. Three of the CHs are of positive magnetic polarity and two are negative. The most long-lived CH was being formed during 2 days and existed for 27 rotations. This CH was associated with fast solar wind at 1 AU of approximately 620$pm 40$ km s$^{-1}$. The 3D MHD modeling for this time period shows an open field structure above this CH. We conclude that the global magnetic field of the Sun possessed a multi-pole structure during this time period. Calculation of the harmonic power spectrum of the solar magnetic field demonstrates a greater prevalence of multi-pole components over the dipole component in the 2007 solar minimum compared to the 1996 solar minimum. The unusual large separation between the dipole and multi-pole components is due to the very low magnitude of the dipole component, which is three times lower than that in the previous 1996 solar minimum.