Do you want to publish a course? Click here

The Radial Distribution of Mono-Metallicity Populations in the Galactic Disk as Evidence for Two-Phase Disk Formation

62   0   0.0 ( 0 )
 Added by Aura Obreja
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent determinations of the radial distributions of mono-metallicity populations (MMPs, i.e., stars in narrow bins in [Fe/H] within wider [$alpha$/Fe] ranges) by the SDSS-III/APOGEE DR12 survey cast doubts on the classical thin - thick disk dichotomy. The analysis of these observations lead to the non-$[alpha$/Fe] enhanced populations splitting into MMPs with different surface densities according to their [Fe/H]. By contrast, $[alpha$/Fe] enhanced (i.e., old) populations show an homogeneous behaviour. We analyze these results in the wider context of disk formation within non-isolated halos embedded in the Cosmic Web, resulting in a two-phase mass assembly. By performing hydrodynamical simulations in the context of the $rm Lambda CDM$ model, we have found that the two phases of halo mass assembly (an early, fast phase, followed by a slow one, with low mass assembly rates) are very relevant to determine the radial structure of MMP distributions, while radial mixing has only a secondary role, depending on the coeval dynamical and/or destabilizing events. Indeed, while the frequent dynamical violent events occuring at high redshift remove metallicity gradients, and imply efficient stellar mixing, the relatively quiescent dynamics after the transition keeps [Fe/H] gaseous gradients and prevents newly formed stars to suffer from strong radial mixing. By linking the two-component disk concept with the two-phase halo mass assembly scenario, our results set halo virialization (the event marking the transition from the fast to the slow phases) as the separating event marking periods characterized by different physical conditions under which thick and thin disk stars were born.



rate research

Read More

We present a detailed determination and analysis of 3D stellar mass distribution of the Galactic disk for mono-age populations using a sample of 0.93 million main-sequence turn-off and subgiant stars from the LAMOST Galactic Surveys. Our results show (1) all stellar populations younger than 10,Gyr exhibit strong disk flaring, which is accompanied with a dumpy vertical density profile that is best described by a $sech^n$ function with index depending on both radius and age; (2) Asymmetries and wave-like oscillations are presented in both the radial and vertical direction, with strength varying with stellar populations; (3) As a contribution by the Local spiral arm, the mid-plane stellar mass density at solar radius but 400--800,pc (3--6$^circ$) away from the Sun in the azimuthal direction has a value of $0.0594pm0.0008$,$M_odot$/pc$^3$, which is 0.0164,$M_odot$/pc$^3$ higher than previous estimates at the solar neighborhood. The result causes doubts on the current estimate of local dark matter density; (4) The radial distribution of surface mass density yields a disk scale length evolving from $sim$4,kpc for the young to $sim$2,kpc for the old populations. The overall population exhibits a disk scale length of $2.48pm0.05$,kpc, and a total stellar mass of $3.6(pm0.1)times10^{10}$,$M_odot$ assuming $R_{odot}=8.0$,kpc, and the value becomes $4.1(pm0.1)times10^{10}$,$M_odot$ if $R_{odot}=8.3$,kpc; (5) The disk has a peak star formation rate ({rm SFR}) changing from 6--8,Gyr at the inner to 4--6,Gyr ago at the outer part, indicating an inside-out assemblage history. The 0--1,Gyr population yields a recent disk total {rm SFR} of $1.96pm0.12$,$M_odot$/yr.
Studying the Milky Way disk structure using stars in narrow bins of [Fe/H] and [alpha/Fe] has recently been proposed as a powerful method to understand the Galactic thick and thin disk formation. It has been assumed so far that these mono-abundance populations (MAPs) are also coeval, or mono-age, populations. Here we study this relationship for a Milky Way chemo-dynamical model and show that equivalence between MAPs and mono-age populations exists only for the high-[alpha/Fe] tail, where the chemical evolution curves of different Galactic radii are far apart. At lower [alpha/Fe]-values a MAP is composed of stars with a range in ages, even for small observational uncertainties and a small MAP bin size. Due to the disk inside-out formation, for these MAPs younger stars are typically located at larger radii, which results in negative radial age gradients that can be as large as 2 Gyr/kpc. Positive radial age gradients can result for MAPs at the lowest [alpha/Fe] and highest [Fe/H] end. Such variations with age prevent the simple interpretation of observations for which accurate ages are not available. Studying the variation with radius of the stellar surface density and scale-height in our model, we find good agreement to recent analyses of the APOGEE red-clump (RC) sample when 1-4 Gyr old stars dominate (as expected for the RC). Our results suggest that the APOGEE data are consistent with a Milky Way model for which mono-age populations flare for all ages. We propose observational tests for the validity of our predictions and argue that using accurate age measurements, such as from asteroseismology, is crucial for putting constraints on the Galactic formation and evolution.
82 - Y.Q. Chen , G. Zhao 2020
Radial migration is an important process in the Galactic disk. A few open clusters show some evidence on this mechanism but there is no systematic study. In this work, we investigate the role of radial migration on the Galactic disk based on a large sample of 146 open clusters with homogeneous metallicity and age from Netopil et al. and kinematics calculated from Gaia DR2. The birth site Rb, guiding radius Rg and other orbital parameters are calculated, and the migration distance |Rg-Rb| is obtained, which is a combination of metallicity, kinematics and age information. It is found that 44% open clusters have |Rg-Rb|< 1 kpc, for which radial migration (churning) is not significant. Among the remaining 56% open clusters with |Rg-Rb|> 1 kpc, young ones with t<1.0 Gyr tend to migrate inward, while older clusters usually migrate outward. Different mechanisms of radial migration between young and old clusters are suggested based on their different migration rates, Galactic locations and orbital parameters. For the old group, we propose a plausible way to estimate migration rate and obtain a reasonable value of 1.5(+-0.5) kpc/Gyr based on ten intermediate-age clusters at the outer disk, where the existence of several special clusters implies its complicate formation history.
We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280 (~5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars of NGC 7793 extend significantly farther than the underlying HI disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.
We found that an intermediate velocity cloud (IVC) IVC 86-36 in HI 21 cm emission shows a head-tail distribution toward the Galactic plane with marked parallel filamentary streamers, which is extended over 40 degrees in the sky. The distance of IVC 86-36 is constrained to be less than ~3 kpc from absorption of a background star as determined from opticalspectroscopy. There is a bridge feature in velocity between the IVC and the local ISM with velocity separation of ~50 km s-1, which may indicate dynamical interaction of the IVC with the disk. If the interaction is correct, the distance estimate d of the IVC ranges from 200 pc to 3 kpc, and the mass of the IVC head is estimated to be 7X103(d/1kpc)2Msol. The IVC shares similar properties to the Smith cloud located at 12 kpc, including the head-tail distribution, streamers, and bridge feature, while the mass of the IVC is less than ~0.1 of the Smith cloud. A comparison between the Hi and the Planck/IRAS dust emission indicates that the dust emission of IVC 86-36 is not detectable in spite of its HI column density of 2X10^20 cm-2, indicating low metalicity of IVC 86-36 by a factor of ~< 0.2 as compared with the solar neighbor. We conclude that IVC 86-38 is an infalling cloud which likely originated in the low-metallicity environment of the Galactic halo or the Magellanic system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا