Do you want to publish a course? Click here

Slow Dynamics in Translation-Invariant Quantum Lattice Models

122   0   0.0 ( 0 )
 Added by Zlatko Papi\\'c
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiment and numerical simulations.



rate research

Read More

Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect. Here we study quantum dynamics of an isolated 1d spin-glass under application of a transverse field. At high energy densities, the system is ergodic, relaxing via resonance avalanche mechanism, that is also responsible for the destruction of MBL in non-glassy systems with power-law interactions. At low energy densities, the interaction-induced fields obtain a power-law soft gap, making the resonance avalanche mechanism inefficient. This leads to the persistence of the spin-glass order, as demonstrated by resonance analysis and by numerical studies. A small fraction of resonant spins forms a thermalizing system with long-range entanglement, making this regime distinct from the conventional MBL. The model considered can be realized in systems of trapped ions, opening the door to investigating slow quantum dynamics induced by glassiness.
We study the purely relaxational dynamics (model A) at criticality in three-dimensional disordered Ising systems whose static critical behaviour belongs to the randomly diluted Ising universality class. We consider the site-diluted and bond-diluted Ising models, and the +- J Ising model along the paramagnetic-ferromagnetic transition line. We perform Monte Carlo simulations at the critical point using the Metropolis algorithm and study the dynamic behaviour in equilibrium at various values of the disorder parameter. The results provide a robust evidence of the existence of a unique model-A dynamic universality class which describes the relaxational critical dynamics in all considered models. In particular, the analysis of the size-dependence of suitably defined autocorrelation times at the critical point provides the estimate z=2.35(2) for the universal dynamic critical exponent. We also study the off-equilibrium relaxational dynamics following a quench from T=infty to T=T_c. In agreement with the field-theory scenario, the analysis of the off-equilibrium dynamic critical behavior gives an estimate of z that is perfectly consistent with the equilibrium estimate z=2.35(2).
It is typically assumed that disorder is essential to realize Anderson localization. Recently, a number of proposals have suggested that an interacting, translation invariant system can also exhibit localization. We examine these claims in the context of a one-dimensional spin ladder. At intermediate time scales, we find slow growth of entanglement entropy consistent with the phenomenology of many-body localization. However, at longer times, all finite wavelength spin polarizations decay in a finite time, independent of system size. We identify a single length scale which parametrically controls both the eventual spin transport times and the divergence of the susceptibility to spin glass ordering. We dub this long pre-thermal dynamical behavior, intermediate between full localization and diffusion, quasi-many body localization.
We study the time evolution of quantum entanglement for a specific class of quantum dynamics, namely the locally scrambled quantum dynamics, where each step of the unitary evolution is drawn from a random ensemble that is invariant under local (on-site) basis transformations. In this case, the average entanglement entropy follows Markovian dynamics that the entanglement property of the future state can be predicted solely based on the entanglement properties of the current state and the unitary operator at each step. We introduce the entanglement feature formulation to concisely organize the entanglement entropies over all subsystems into a many-body wave function, which allows us to describe the entanglement dynamics using an imaginary-time Schrodinger equation, such that various tools developed in quantum many-body physics can be applied. The framework enables us to investigate a variety of random quantum dynamics beyond Haar random circuits and Brownian circuits. We perform numerical simulations for these models and demonstrate the validity and prediction power of the entanglement feature approach.
We characterize the early stages of the approach to equilibrium in isolated quantum systems through the evolution of the entanglement spectrum. We find that the entanglement spectrum of a subsystem evolves with at least three distinct timescales. First, on an o(1) timescale, independent of system or subsystem size and the details of the dynamics, the entanglement spectrum develops nearest-neighbor level repulsion. The second timescale sets in when the light-cone has traversed the subsystem. Between these two times, the density of states of the reduced density matrix takes a universal, scale-free 1/f form; thus, random-matrix theory captures the local statistics of the entanglement spectrum but not its global structure. The third time scale is that on which the entanglement saturates; this occurs well after the light-cone traverses the subsystem. Between the second and third times, the entanglement spectrum compresses to its thermal Marchenko-Pastur form. These features hold for chaotic Hamiltonian and Floquet dynamics as well as a range of quantum circuit models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا