Do you want to publish a course? Click here

Thermal Jeans fragmentation within 1000 AU in OMC-1S

82   0   0.0 ( 0 )
 Added by Aina Palau
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present subarcsecond 1.3 mm continuum ALMA observations towards the Orion Molecular Cloud 1 South (OMC-1S) region, down to a spatial resolution of 74 AU, which reveal a total of 31 continuum sources. We also present subarcsecond 7 mm continuum VLA observations of the same region, which allow to further study fragmentation down to a spatial resolution of 40 AU. By applying a Mean Surface Density of Companions method we find a characteristic spatial scale at ~560 AU, and we use this spatial scale to define the boundary of 19 `cores in OMC-1S as groupings of millimeter sources. We find an additional characteristic spatial scale at ~2900 AU, which is the typical scale of the filaments in OMC-1S, suggesting a two-level fragmentation process. We measured the fragmentation level within each core and find a higher fragmentation towards the southern filament. In addition, the cores of the southern filament are also the densest (within 1100 AU) cores in OMC-1S. This is fully consistent with previous studies of fragmentation at spatial scales one order of magnitude larger, and suggests that fragmentation down to 40 AU seems to be governed by thermal Jeans processes in OMC-1S.



rate research

Read More

We report new, $sim$1000 AU spatial resolution observations of 225 GHz dust continuum emission towards the OB cluster-forming molecular clump G33.92+0.11. On parsec scales, this molecular clump presents a morphology with several arm-like dense gas structures surrounding the two central massive ($gtrsim$100 $M_{odot}$) cores. From the new, higher resolution observations, we identified 28 localized, spatially compact dust continuum emission sources, which may be candidates of young stellar objects. Only one of them is not embedded within known arm-like (or elongated) dense gas structures. The spatial separations of these compact sources can be very well explained by Jeans lengths. We found that G33.92+0.11 may be consistently described by a marginally centrifugally supported, Toomre unstable accretion flow which is approximately in a face-on projection. The arm-like overdensities are natural consequence of the Toomre instability, which can fragment to form young stellar objects in shorter time scales than the timescale of the global clump contraction. On our resolved spatial scales, there is not yet evidence that the fragmentation is halted by turbulence, magnetic field, or stellar feedback.
A full understanding of high-mass star formation requires the study of one of the most elusive components of the energy balance in the interstellar medium: magnetic fields. We report ALMA 1.2 mm, high-resolution (700 au) dust polarization and molecular line observations of the rotating hot molecular core embedded in the high-mass star-forming region IRAS 18089-1732. The dust continuum emission and magnetic field morphology present spiral-like features resembling a whirlpool. The velocity field traced by the H13CO+ (J=3-2) transition line reveals a complex structure with spiral filaments that are likely infalling and rotating, dragging the field with them. We have modeled the magnetic field and find that the best model corresponds to a weakly magnetized core with a mass-to-magnetic-flux ratio (lambda) of 8.38. The modeled magnetic field is dominated by a poloidal component, but with an important contribution from the toroidal component that has a magnitude of 30% of the poloidal component. Using the Davis-Chandrasekhar-Fermi method, we estimate a magnetic field strength of 3.5 mG. At the spatial scales accessible to ALMA, an analysis of the energy balance of the system indicates that gravity overwhelms turbulence, rotation, and the magnetic field. We show that high-mass star formation can occur in weakly magnetized environments, with gravity taking the dominant role.
We combine previously published interferometric and single-dish data of relatively nearby massive dense cores that are actively forming stars to test whether their `fragmentation level is controlled by turbulent or thermal support. We find no clear correlation between the fragmentation level and velocity dispersion, nor between the observed number of fragments and the number of fragments expected when the gravitationally unstable mass is calculated including various prescriptions for `turbulent support. On the other hand, the best correlation is found for the case of pure thermal Jeans fragmentation, for which we infer a core formation efficiency around 13 per cent, consistent with previous works. We conclude that the dominant factor determining the fragmentation level of star-forming massive dense cores at 0.1 pc scale seems to be thermal Jeans fragmentation.
The Galactic bulge is a tumultuous dense region of space, packed with stars separated by far smaller distances than those in the Solar neighborhood. A quantification of the frequency and proximity of close stellar encounters in this environment dictates the exchange of material, disruption of planetary orbits, and threat of sterilizing energetic events. We present estimated encounter rates for stars in the Milky Way bulge found using a combination of numerical and analytical methods. By integrating the orbits of bulge stars with varying orbital energy and angular momentum to find their positions over time, we were able to estimate how many close stellar encounters the stars should experience as a function of orbit shape. We determined that ~80% of bulge stars have encounters within 1000 AU and that half of bulge stars will have >35 such encounters, both over a gigayear. Our work has interesting implications for the long-term survivability of planets in the Galactic bulge.
135 - Genaro Suarez 2021
We present the core mass function (CMF) of the massive star-forming clump G33.92+0.11 using 1.3 mm observations obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). With a resolution of 1000 au, this is one of the highest resolution CMF measurements to date. The CMF is corrected by flux and number incompleteness to obtain a sample that is complete for gas masses $Mgtrsim2.0 M_odot$. The resulting CMF is well represented by a power-law function ($dN/dlog Mpropto M^Gamma$), whose slope is determined using two different approaches: $i)$ by least-squares fitting of power-law functions to the flux- and number-corrected CMF, and $ii)$ by comparing the observed CMF to simulated samples with similar incompleteness. We provide a prescription to quantify and correct a flattening bias affecting the slope fits in the first approach, which is caused by small-sample or edge effects when the data is represented by either classical histograms or a kernel density estimate, respectively. The resulting slopes from both approaches are in good agreement each other, with $Gamma=-1.11_{-0.11}^{+0.12}$ being our adopted value. Although this slope appears to be slightly flatter than the Salpeter slope $Gamma=-1.35$ for the stellar initial mass function (IMF), we find from Monte Carlo simulations that the CMF in G33.92+0.11 is statistically indistinguishable from the Salpeter representation of the stellar IMF. Our results are consistent with the idea that the form of the IMF is inherited from the CMF, at least at high masses and when the latter is observed at high-enough resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا