Do you want to publish a course? Click here

Observational constraints on tensor perturbations in cosmological models with dynamical dark energy

84   0   0.0 ( 0 )
 Added by Olga Sergijenko
 Publication date 2017
  fields Physics
and research's language is English
 Authors O. Sergijenko




Ask ChatGPT about the research

We constrain the contribution of tensor-mode perturbations with free $n_t$ in the models with dynamical dark energy with the barotropic equation of state using Planck-2015 data on CMB anisotropy, polarization and lensing, BICEP2/Keck Array data on B-mode polarization, power spectrum of galaxies from WiggleZ and SN Ia data from the JLA compilation. We also investigate the uncertainties of reconstructed potential of the scalar field dark energy.



rate research

Read More

The recent GW170817 measurement favors the simplest dark energy models, such as a single scalar field. Quintessence models can be classified in two classes, freezing and thawing, depending on whether the equation of state decreases towards $-1$ or departs from it. In this paper we put observational constraints on the parameters governing the equations of state of tracking freezing, scaling freezing and thawing models using updated data, from the Planck 2015 release, joint light-curve analysis and baryonic acoustic oscillations. Because of the current tensions on the value of the Hubble parameter $H_0$, unlike previous authors, we let this parameter vary, which modifies significantly the results. Finally, we also derive constraints on neutrino masses in each of these scenarios.
We consider an interacting field theory model that describes the interaction between dark energy - dark matter interaction. Only for a specific interaction term, this interacting field theory description has an equivalent interacting fluid description. For inverse power law potentials and linear interaction function, we show that the interacting dark sector model is consistent with $textit{four cosmological data sets}$ -- Hubble parameter measurements (Hz), Baryonic Acoustic Oscillation data (BAO), Supernova Type Ia data (SN), and High redshift HII galaxy measurements (HIIG). More specifically, these data sets prefer a negative value of interaction strength in the dark sector and lead to the best-fit value of Hubble constant $H_0 = 69.9^{0.46}_{1.02}$ km s$^{-1}$ Mpc$^{-1}$. Thus, the interacting field theory model $textit{alleviates the Hubble tension}$ between Planck and these four cosmological probes. Having established that this interacting field theory model is consistent with cosmological observations, we obtain quantifying tools to distinguish between the interacting and non-interacting dark sector scenarios. We focus on the variation of the scalar metric perturbed quantities as a function of redshift related to structure formation, weak gravitational lensing, and the integrated Sachs-Wolfe effect. We show that the difference in the evolution becomes significant for $z < 20$, for all length scales, and the difference peaks at smaller redshift values $z < 5$. We then discuss the implications of our results for the upcoming missions.
We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is a simple and widely used but physically inconsistent parameterization of dynamical dark energy, while the $phi$CDM model is a physically consistent one in which a scalar field $phi$ with an inverse power-law potential energy density powers the currently accelerating cosmological expansion. Both these models have one additional parameter compared to standard $Lambda$CDM and both better fit the TT + lowP + lensing + BAO data than does the standard tilted flat-$Lambda$CDM model, with $Delta chi^2 = -1.26 (-1.60)$ for the XCDM ($phi$CDM) model relative to the $Lambda$CDM model. While this is a 1.1$sigma$ (1.3$sigma$) improvement over standard $Lambda$CDM and so not significant, dynamical dark energy models cannot be ruled out. In addition, both dynamical dark energy models reduce the tension between the Planck 2015 CMB anisotropy and the weak lensing $sigma_8$ constraints.
We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological ones using the combined datasets which include the CMB power spectra from WMAP7, the baryon acoustic oscillations in the space distribution of galaxies from SDSS DR7, the power spectrum of luminous red galaxies from SDSS DR7 and the light curves of SN Ia from 2 different compilations: Union2 (SALT2 light curve fitting) and SDSS (SALT2 and MLCS2k2 light curve fittings). It has been found that the initial value of dark energy equation of state parameter is constrained very weakly by most of the data while the rest of main cosmological parameters are well constrained: their likelihoods and posteriors are similar, have the forms close to Gaussian (or half-Gaussian) and their confidential ranges are narrow. The most reliable determinations of the best fitting value and $1sigma$ confidence range for the initial value of dark energy equation of state parameter were obtained from the combined datasets including SN Ia data from the full SDSS compilation with MLCS2k2 fitting of light curves. In all such cases the best fitting value of this parameter is lower than the value of corresponding parameter for current epoch. Such dark energy loses its repulsive properties and in future the expansion of the Universe will change into contraction. We also perform an error forecast for the Planck mock data and show that they narrow essentially the confidential ranges of cosmological parameters values, moreover, their combination with SN SDSS compilation with MLCS2k2 light curve fitting may exclude the fields with initial equation of state parameter $>-0.1$ at 2$sigma$ confidential level.
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of $Omega_{m0}$. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at $z=0.22$, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parameter $w(z)$ of dark energy. We find no significant evidence for evolving $w(z)$. With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift isimproved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا