Gas kinematics are an important part of the planet formation process. Turbulence influences planetesimal growth and migration from the scale of sub-micron dust grains through gas-giant planets. Radio observations of resolved molecular line emission can directly measure this non-thermal motion and, taking advantage of the layered chemical structure of disks, different molecular lines can be combined to map the turbulence throughout the vertical extent of a protoplanetary disk. Here we present ALMA observations of three molecules (DCO$^+$(3-2), C$^{18}$O(2-1) and CO(2-1)) from the disk around HD 163296. We are able to place stringent upper limits ($v_{rm turb}<$0.06c$_s$, $<$0.05c$_s$ and $<$0.04c$_s$ for CO(2-1), C$^{18}$O(2-1) and DCO$^+$(3-2) respectively), corresponding to $alphalesssim$3$times$10$^{-3}$, similar to our prior limit derived from CO(3-2). This indicates that there is little turbulence throughout the vertical extent of the disk, contrary to theoretical predictions based on the magneto-rotational instability and gravito-turbulence. In modeling the DCO$^+$ emission we also find that it is confined to three concentric rings at 65.7$pm$0.9 au, 149.9$^{+0.5}_{-0.7}$ au and 259$pm$1 au, indicative of a complex chemical environment.