Do you want to publish a course? Click here

Note on lattice regularization and equal-time correlators for parton distribution functions

61   0   0.0 ( 0 )
 Added by Giancarlo Rossi
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that a recent interesting idea to circumvent the difficulties with the continuation of parton distribution functions to the Euclidean region, that consists in looking at equal time correlators between proton states of infinite momentum, encounters some problems related to the power divergent mixing pattern of DIS operators, when implemented within the lattice regularization.



rate research

Read More

We perform a first calculation for the unpolarized parton distribution function of the $Delta^+$ baryon using lattice QCD simulations within the framework of Large Momentum Effective Theory. Two ensembles of $N_f=2+1+1$ twisted mass fermions are utilized with a pion mass of 270 MeV and 360 MeV, respectively. The baryon, which is treated as a stable single-particle state, is boosted with momentum $P_3$ with values ${0.42,0.83,1.25}$ GeV, and we utilize momentum smearing to improve the signal. The unpolarized parton distribution function of $Delta^+$ is obtained using a non-perturbative renormalization and a one-loop formula for the matching, with encouraging precision. In particular, we compute the $overline{d}(x)-overline{u}(x)$ asymmetry and compare it with the same quantity in the nucleon, in a first attempt towards resolving the physical mechanism responsible for generating such asymmetry.
Ioffe-time distributions, which are functions of the Ioffe-time $ u$, are the Fourier transforms of parton distribution functions with respect to the momentum fraction variable $x$. These distributions can be obtained from suitable equal time, quark bilinear hadronic matrix elements which can be calculated from first principles in lattice QCD, as it has been recently argued. In this talk I present the first numerical calculation of the Ioffe-time distributions of the nucleon in the quenched approximation.
The fraction of the longitudinal momentum of ${}^3text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_pisim 800$ MeV, extrapolated to the physical quark masses. This constraint is consistent with, and significantly more precise than, determinations from global nuclear parton distribution function fits. Including the lattice QCD determination of the momentum fraction in the nNNPDF global fitting framework results in the uncertainty on the isovector momentum fraction ratio being reduced by a factor of 2.5, and thereby enables a more precise extraction of the $u$ and $d$ parton distributions in ${}^3text{He}$.
We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the lattice spacing. Novel elements of the calculations are non-perturbative renormalization and extraction of a formula for the matching to light-cone PDFs. Final results are presented in the $overline{rm MS}$ scheme at a scale of $sqrt{2}$ GeV.
We present results for the unpolarized parton distribution function of the nucleon computed in lattice QCD at the physical pion mass. This is the first study of its kind employing the method of Ioffe time pseudo-distributions. Beyond the reconstruction of the Bjorken-$x$ dependence we also extract the lowest moments of the distribution function using the small Ioffe time expansion of the Ioffe time pseudo-distribution. We compare our findings with the pertinent phenomenological determinations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا