Do you want to publish a course? Click here

Predictive modelling of training loads and injury in Australian football

68   0   0.0 ( 0 )
 Added by David Carey
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

To investigate whether training load monitoring data could be used to predict injuries in elite Australian football players, data were collected from elite athletes over 3 seasons at an Australian football club. Loads were quantified using GPS devices, accelerometers and player perceived exertion ratings. Absolute and relative training load metrics were calculated for each player each day (rolling average, exponentially weighted moving average, acute:chronic workload ratio, monotony and strain). Injury prediction models (regularised logistic regression, generalised estimating equations, random forests and support vector machines) were built for non-contact, non-contact time-loss and hamstring specific injuries using the first two seasons of data. Injury predictions were generated for the third season and evaluated using the area under the receiver operator characteristic (AUC). Predictive performance was only marginally better than chance for models of non-contact and non-contact time-loss injuries (AUC$<$0.65). The best performing model was a multivariate logistic regression for hamstring injuries (best AUC=0.76). Learning curves suggested logistic regression was underfitting the load-injury relationship and that using a more complex model or increasing the amount of model building data may lead to future improvements. Injury prediction models built using training load data from a single club showed poor ability to predict injuries when tested on previously unseen data, suggesting they are limited as a daily decision tool for practitioners. Focusing the modelling approach on specific injury types and increasing the amount of training data may lead to the development of improved predictive models for injury prevention.



rate research

Read More

We propose a versatile joint regression framework for count responses. The method is implemented in the R add-on package GJRM and allows for modelling linear and non-linear dependence through the use of several copulae. Moreover, the parameters of the marginal distributions of the count responses and of the copula can be specified as flexible functions of covariates. Motivated by a football application, we also discuss an extension which forces the regression coefficients of the marginal (linear) predictors to be equal via a suitable penalisation. Model fitting is based on a trust region algorithm which estimates simultaneously all the parameters of the joint models. We investigate the proposals empirical performance in two simulation studies, the first one designed for arbitrary count data, the other one reflecting football-specific settings. Finally, the method is applied to FIFA World Cup data, showing its competitiveness to the standard approach with regard to predictive performance.
Sports are spontaneous generators of stories. Through skill and chance, the script of each game is dynamically written in real time by players acting out possible trajectories allowed by a sports rules. By properly characterizing a given sports ecology of `game stories, we are able to capture the sports capacity for unfolding interesting narratives, in part by contrasting them with random walks. Here, we explore the game story space afforded by a data set of 1,310 Australian Football League (AFL) score lines. We find that AFL games exhibit a continuous spectrum of stories rather than distinct clusters. We show how coarse-graining reveals identifiable motifs ranging from last minute comeback wins to one-sided blowouts. Through an extensive comparison with biased random walks, we show that real AFL games deliver a broader array of motifs than null models, and we provide consequent insights into the narrative appeal of real games.
Womens football is gaining supporters and practitioners worldwide, raising questions about what the differences are with mens football. While the two sports are often compared based on the players physical attributes, we analyze the spatio-temporal events during matches in the last World Cups to compare male and female teams based on their technical performance. We train an artificial intelligence model to recognize if a team is male or female based on variables that describe a matchs playing intensity, accuracy, and performance quality. Our model accurately distinguishes between mens and womens football, revealing crucial technical differences, which we investigate through the extraction of explanations from the classifiers decisions. The differences between mens and womens football are rooted in play accuracy, the recovery time of ball possession, and the players performance quality. Our methodology may help journalists and fans understand what makes womens football a distinct sport and coaches design tactics tailored to female teams.
Educational achievement distributions for Australian indigenous and nonindigenous populations in the years 2001, 2006, 2014 and 2017 are considered. Bayesian inference is used to analyse how these ordinal categorical distributions have changed over time and to compare indigenous and nonindigenous distributions. Both the level of educational achievement and inequality in educational achievement are considered. To compare changes in levels over time, as well as inequality between the two populations, first order stochastic dominance and an index of educational poverty are used. To examine changes in inequality over time, two inequality indices and generalised Lorenz dominance are considered. Results are presented in terms of posterior densities for the indices and posterior probabilities for dominance for the dominance comparisons. We find some evidence of improvement over time, especially in the lower parts of the indigenous distribution and that inequality has significantly increased from 2001 to 2017.
Patients with Acute Kidney Injury (AKI) increase mortality, morbidity, and long-term adverse events. Therefore, early identification of AKI may improve renal function recovery, decrease comorbidities, and further improve patients survival. To control certain risk factors and develop targeted prevention strategies are important to reduce the risk of AKI. Drug-drug interactions and drug-disease interactions are critical issues for AKI. Typical statistical approaches cannot handle the complexity of drug-drug and drug-disease interactions. In this paper, we propose a novel learning algorithm, Deep Rule Forests (DRF), which discovers rules from multilayer tree models as the combinations of drug usages and disease indications to help identify such interactions. We found that several disease and drug usages are considered having significant impact on the occurrence of AKI. Our experimental results also show that the DRF model performs comparatively better than typical tree-based and other state-of-the-art algorithms in terms of prediction accuracy and model interpretability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا