Do you want to publish a course? Click here

Non-Spherically Symmetric Collapse in Asymptotically AdS Spacetimes

62   0   0.0 ( 0 )
 Added by Hans Bantilan
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of non-spherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.



rate research

Read More

We present results from the evolution of spacetimes that describe the merger of asymptotically global AdS black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring-down. The boundary stress tensor of the dual CFT is conformally related to a stress tensor in Minkowski space which inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times.
We present the first proof-of-principle Cauchy evolutions of asymptotically global AdS spacetimes with no imposed symmetries, employing a numerical scheme based on the generalized harmonic form of the Einstein equations. In this scheme, the main difficulty in removing all symmetry assumptions can be phrased in terms of finding a set of generalized harmonic source functions that are consistent with AdS boundary conditions. In four spacetime dimensions, we detail an explicit set of source functions that achieves evolution in full generality. A similar prescription should also lead to stable evolution in higher spacetime dimensions, various couplings with matter fields, and on the Poincare patch. We apply this scheme to obtain the first long-time stable 3+1 simulations of four dimensional spacetimes with a negative cosmological constant, using initial data sourced by a massless scalar field. We present preliminary results of gravitational collapse with no symmetry assumptions, and the subsequent quasi-normal mode ringdown to a static black hole in the bulk, which corresponds to evolution towards a homogeneous state on the boundary.
We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on $R^{d-1,1}$, the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in $AdS_{d+1}$ space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in $R^{d,1}$.
In a recent paper [arXiv:1001.0785], Verlinde has shown that the Newton gravity appears as an entropy force. In this paper we show how gravity appears as entropy force in Einsteins equation of gravitational field in a general spherically symmetric spacetime. We mainly focus on the trapping horizon of the spacetime. We find that when matter fields are absent, the change of entropy associated with the trapping horizon indeed can be identified with an entropy force. When matter fields are present, we see that heat flux of matter fields also leads to the change of entropy. Applying arguments made by Verlinde and Smolin, respectively, to the trapping horizon, we find that the entropy force is given by the surface gravity of the horizon. The cases in the untrapped region of the spacetime are also discussed.
We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا