Triangles capturing many lattice points


Abstract in English

We study a combinatorial problem that recently arose in the context of shape optimization: among all triangles with vertices $(0,0)$, $(x,0)$, and $(0,y)$ and fixed area, which one encloses the most lattice points from $mathbb{Z}_{>0}^2$? Moreover, does its shape necessarily converge to the isosceles triangle $(x=y)$ as the area becomes large? Laugesen and Liu suggested that, in contrast to similar problems, there might not be a limiting shape. We prove that the limiting set is indeed nontrivial and contains infinitely many elements. We also show that there exist `bad areas where no triangle is particularly good at capturing lattice points and show that there exists an infinite set of slopes $y/x$ such that any associated triangle captures more lattice points than any other fixed triangle for infinitely many (and arbitrarily large) areas; this set of slopes is a fractal subset of $[1/3, 3]$ and has Minkowski dimension at most $3/4$.

Download