Do you want to publish a course? Click here

Non-Equilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind textit{(Invited Review)}

64   0   0.0 ( 0 )
 Added by Jaroslav Dud\\'ik
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distributions are described together with their influence on the heat flux as well as on the rates of individual collisional processes and the resulting optically thin synthetic spectra. Constraints on the presence of high-energy electrons from observations are reviewed, including positive detection of non-Maxwellian distributions in the solar corona, transition region, flares, and wind. Occurrence of non-equilibrium ionization is reviewed as well, especially in connection to hydrodynamic and generalized collisional-radiative modelling. Predicted spectroscopic signatures of non-equilibrium ionization depending on the assumed plasma conditions are summarized. Finally, we discuss the future remote-sensing instrumentation that can be used for detection of these non-equilibrium phenomena in various spectral ranges.



rate research

Read More

Coronal jets are transient, collimated eruptions that occur in regions of predominantly open magnetic field in the solar corona. Our understanding of these events has greatly evolved in recent years but several open questions, such as the contribution of coronal jets to the solar wind, remain. Here we present an overview of the observations and numerical modeling of coronal jets, followed by a brief description of next-generation simulations that include an advanced description of the energy transfer in the corona (thermodynamic MHD), large spherical computational domains, and the solar wind. These new models will allow us to address some of the open questions.
There are relatively few observations of UV emission during the impulsive phases of solar flares, so the nature of that emission is poorly known. Photons produced by solar flares can resonantly scatter off atoms and ions in the corona. Based on off-limb measurements by SOHO/UVCS, we derive the O VI $lambda$1032 luminosities for 29 flares during the impulsive phase and the Ly$alpha$ luminosities of 5 flares, and we compare them with X-ray luminosities from GOES measurements. The upper transition region and lower transition region luminosities of the events observed are comparable. They are also comparable to the luminosity of the X-ray emitting gas at the beginning of the flare, but after 10-15 minutes the X-ray luminosity usually dominates. In some cases we can use Doppler dimming to estimate flow speeds of the O VI emitting gas, and 5 events show speeds in the 40 to 80 $rm km s^{-1}$ range. The O VI emission could originate in gas evaporating to fill the X-ray flare loops, in heated chromospheric gas at the footpoints, or in heated prominence material in the coronal mass ejection. All three sources may contribute in different events or even in a single event, and the relative timing of UV and X-ray brightness peaks, the flow speeds, and the total O VI luminosity favor each source in one or more events.
Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.
Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold H$alpha$ spectral line, which enables us to detect and study solar flares, filaments, filament eruptions, and Moreton waves. Existing H$alpha$ networks such as the GONG and the Global High-Resolution H$alpha$ Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of H$alpha$ flares and filaments established at Kanzelhohe Observatory (KSO; Austria) in the frame of the ESA Space Situational Awareness programme. During the evaluation period 7/2013 - 11/2015, KSO provided 3020 hours of real-time H$alpha$ observations at the SWE portal. In total, 824 H$alpha$ flares were detected and classified by the real-time detection system, including 174 events of H$alpha$ importance class 1 and larger. For the total sample of events, 95% of the automatically determined flare peak times lie within $pm$5 min of the values given in the official optical flares reports (by NOAA and KSO), and 76% of the start times. The heliographic positions determined are better than $pm$5$^circ$. The probability of detection of flares of importance 1 or larger is 95%, with a false alarm rate of 16%. These numbers confirm the high potential of automatic flare detection and alerting from ground-based observatories.
Both coronal holes and active regions are source regions of the solar wind. The distribution of these coronal structures across both space and time is well known, but it is unclear how much each source contributes to the solar wind. In this study we use photospheric magnetic field maps observed over the past four solar cycles to estimate what fraction of magnetic open solar flux is rooted in active regions, a proxy for the fraction of all solar wind originating in active regions. We find that the fractional contribution of active regions to the solar wind varies between 30% to 80% at any one time during solar maximum and is negligible at solar minimum, showing a strong correlation with sunspot number. While active regions are typically confined to latitudes $pm$30$^{circ}$ in the corona, the solar wind they produce can reach latitudes up to $pm$60$^{circ}$. Their fractional contribution to the solar wind also correlates with coronal mass ejection rate, and is highly variable, changing by $pm$20% on monthly timescales within individual solar maxima. We speculate that these variations could be driven by coronal mass ejections causing reconfigurations of the coronal magnetic field on sub-monthly timescales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا