Do you want to publish a course? Click here

AMPS: An Augmented Matrix Formulation for Principal Submatrix Updates with Application to Power Grids

119   0   0.0 ( 0 )
 Added by Yu-Hong Yeung
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We present AMPS, an augmented matrix approach to update the solution to a linear system of equations when the matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to perform N - k contingency analysis, i.e., determine the state of the system when exactly k links from N fail. Our algorithms augment the matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. We analyze the time complexity of both algorithms, and show that it is bounded by the number of nonzeros in a subset of the columns of the Cholesky factor that are selected by the nonzeros in the sparse right-hand-side vector. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing N - k contingency analysis on a 778 thousand bus grid, updating a solution with k = 20 elements in 16 milliseconds on an Intel Xeon processor.



rate research

Read More

We present the AMPS algorithm, a finite element solution method that combines principal submatrix updates and Schur complement techniques, well-suited for interactive simulations of deformation and cutting of finite element meshes. Our approach features real-time solutions to the updated stiffness matrix systems to account for interactive changes in mesh connectivity and boundary conditions. Updates are accomplished by an augmented matrix formulation of the stiffness equations to maintain its consistency with changes to the underlying model without refactorization at each timestep. As changes accumulate over multiple simulation timesteps, the augmented solution algorithm enables tens or hundreds of updates per second. Acceleration schemes that exploit sparsity, memoization and parallelization lead to the updates being computed in real-time. The complexity analysis and experimental results for this method demonstrate that it scales linearly with the problem size. Results for cutting and deformation of 3D elastic models are reported for meshes with node counts up to 50,000, and involve models of astigmatism surgery and the brain.
Modeling flow through porous media with multiple pore-networks has now become an active area of research due to recent technological endeavors like geological carbon sequestration and recovery of hydrocarbons from tight rock formations. Herein, we consider the double porosity/permeability (DPP) model, which describes the flow of a single-phase incompressible fluid through a porous medium exhibiting two dominant pore-networks with a possibility of mass transfer across them. We present a stable mixed discontinuous Galerkin (DG) formulation for the DPP model. The formulation enjoys several attractive features. These include: (i) Equal-order interpolation for all the field variables (which is computationally the most convenient) is stable under the proposed formulation. (ii) The stabilization terms are residual-based, and the stabilization parameters do not contain any mesh-dependent parameters. (iii) The formulation is theoretically shown to be consistent, stable, and hence convergent. (iv) The formulation supports non-conforming discretizations and distorted meshes. (v) The DG formulation has improved element-wise (local) mass balance compared to the corresponding continuous formulation. (vi) The proposed formulation can capture physical instabilities in coupled flow and transport problems under the DPP model.
Quasi-Newton techniques approximate the Newton step by estimating the Hessian using the so-called secant equations. Some of these methods compute the Hessian using several secant equations but produce non-symmetric updates. Other quasi-Newton schemes, such as BFGS, enforce symmetry but cannot satisfy more than one secant equation. We propose a new type of quasi-Newton symmetric update using several secant equations in a least-squares sense. Our approach generalizes and unifies the design of quasi-Newton updates and satisfies provable robustness guarantees.
We present a novel approach aimed at high-performance uncertainty quantification for time-dependent problems governed by partial differential equations. In particular, we consider input uncertainties described by a Karhunen-Loeeve expansion and compute statistics of high-dimensional quantities-of-interest, such as the cardiac activation potential. Our methodology relies on a close integration of multilevel Monte Carlo methods, parallel iterative solvers, and a space-time discretization. This combination allows for space-time adaptivity, time-changing domains, and to take advantage of past samples to initialize the space-time solution. The resulting sequence of problems is distributed using a multilevel parallelization strategy, allocating batches of samples having different sizes to a different number of processors. We assess the performance of the proposed framework by showing in detail its application to the solution of nonlinear equations arising from cardiac electrophysiology. Specifically, we study the effect of spatially-correlated perturbations of the heart fibers conductivities on the mean and variance of the resulting activation map. As shown by the experiments, the theoretical rates of convergence of multilevel Monte Carlo are achieved. Moreover, the total computational work for a prescribed accuracy is reduced by an order of magnitude with respect to standard Monte Carlo methods.
The flow of incompressible fluids through porous media plays a crucial role in many technological applications such as enhanced oil recovery and geological carbon-dioxide sequestration. The flow within numerous natural and synthetic porous materials that contain multiple scales of pores cannot be adequately described by the classical Darcy equations. It is for this reason that mathematical models for fluid flow in media with multiple scales of pores have been proposed in the literature. However, these models are analytically intractable for realistic problems. In this paper, a stabilized mixed four-field finite element formulation is presented to study the flow of an incompressible fluid in porous media exhibiting double porosity/permeability. The stabilization terms and the stabilization parameters are derived in a mathematically and thermodynamically consistent manner, and the computationally convenient equal-order interpolation of all the field variables is shown to be stable. A systematic error analysis is performed on the resulting stabilized weak formulation. Representative problems, patch tests and numerical convergence analyses are performed to illustrate the performance and convergence behavior of the proposed mixed formulation in the discrete setting. The accuracy of numerical solutions is assessed using the mathematical properties satisfied by the solutions of this double porosity/permeability model. Moreover, it is shown that the proposed framework can perform well under transient conditions and that it can capture well-known instabilities such as viscous fingering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا