Do you want to publish a course? Click here

[O II] nebular emission from Mg II absorbers: Star formation associated with the absorbing gas

96   0   0.0 ( 0 )
 Added by Ravi Joshi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present nebular emission associated with 198 strong Mg II absorbers at 0.35 $le z le$ 1.1 in the fibre spectra of quasars from the Sloan Digital Sky Survey. Measured [O II] luminosities (L$_{[O II]}$) are typical of sub-L$^{star}$ galaxies with derived star formation rate (uncorrected for fibre losses and dust reddening) in the range of 0.5-20 ${rm M_odot yr^{-1}}$. Typically less than $sim$ 3% of the Mg II systems with rest equivalent width, $W_{2796}$ $ge$ 2 AA, show L$_{[O II]} ge 0.3$ L$^{star}_{[O II]}$. The detection rate is found to increase with increasing $W_{2796}$ and $z$. No significant correlation is found between $W_{2796}$ and L$_{[O II]}$ even when we restrict the samples to narrow $z$-ranges. A strong correlation is seen between L$_{[O II]}$ and $z$. While this is expected from the luminosity evolution of galaxies, we show finite fibre size plays a very crucial role in this correlation. The measured nebular line ratios (like [O III]/[O II] and [O III]/H$beta$) and their $z$ evolution are consistent with those of galaxies detected in deep surveys. Based on the median stacked spectra, we infer the average metallicity (log Z $sim$8.3), ionization parameter (log $q$ $sim$7.5) and stellar mass (log (M/M$_odot$)$sim$9.3). The Mg II systems with nebular emission typically have $W_{2796}$ $ge 2$ AA, Mg II doublet ratio close to 1 and W(Fe II$lambda$2600)/$W_{2796}$ $sim 0.5$ as often seen in damped Ly$alpha$ and 21-cm absorbers at these redshifts. This is the biggest reported sample of [O II] emission from Mg II absorbers at low impact parameters ideally suited for probing various feedback processes at play in $zle 1$ galaxies.



rate research

Read More

We investigate the effect of Fe II equivalent width ($W_{2600}$) and fibre size on the average luminosity of [O II]$lambdalambda$3727,3729 nebular emission associated with Mg II absorbers (at $0.55 le z le 1.3$) in the composite spectra of quasars obtained with 3 and 2 arcsec fibres in the Sloan Digital Sky Survey. We confirm the presence of strong correlations between [O II] luminosity (L$_{[rm O~II]}$) and equivalent width ($W_{2796}$) and redshift of Mg II absorbers. However, we show L$_{[rm O~II]}$ and average luminosity surface density suffers from fibre size effects. More importantly, for a given fibre size the average L$_{[rm O~II]}$ strongly depends on the equivalent width of Fe II absorption lines and found to be higher for Mg II absorbers with $R equiv$ $W_{rm 2600}/W_{rm 2796}$ $ge 0.5$. In fact, we show the observed strong correlations of L$_{[rm O~II]}$ with $W_{2796}$ and $z$ of Mg II absorbers are mainly driven by such systems. Direct [O II] detections also confirm the link between L$_{[rm O~II]}$ and $R$. Therefore, one has to pay attention to the fibre losses and dependence of redshift evolution of Mg II absorbers on $W_{2600}$ before using them as a luminosity unbiased probe of global star formation rate density. We show that the [O II] nebular emission detected in the stacked spectrum is not dominated by few direct detections (i.e., detections $ge 3 sigma$ significant level). On an average the systems with $R$ $ge 0.5$ and $W_{2796}$ $ge 2$ AA are more reddened, showing colour excess E($B-V$) $sim$ 0.02, with respect to the systems with $R$ $< 0.5$ and most likely traces the high H I column density systems.
We present a study of strong intervening absorption systems in the near-IR spectra of 31 luminous quasars at $z>5.7$. The quasar spectra were obtained with {it Gemini} GNIRS that provide continuous wavelength coverage from $sim$0.9 to $sim$2.5 $mu$m. We detect 32 strong Mg II doublet absorbers with rest-frame equivalent width $W_r$ ($lambda2796$) $>1.0$ AA at $2.2 < z < 6.0$. Each Mg II absorber is confirmed by at least two associated Fe II absorption lines in the rest-frame wavelength range of $sim 1600-2600$ AA. We find that the comoving line density ($dN/dX$) of the strong Fe II-bearing Mg II absorbers decreases towards higher redshift at $z>3$, consistent with previous studies. Compared with strong Mg II absorbers detected in damped Ly$alpha$ systems at 2 $<z<$ 4, our absorbers are potentially less saturated and show much larger rest-frame velocity widths. This suggests that the gas traced by our absorbers are potentially affected by galactic superwinds. We analyze the {it Hubble Space Telescope} near-IR images of the quasars and identify possible associated galaxies for our strong absorbers. There are a maximum of two galaxy candidates found within 5 radius of each absorber. The median F105W-band magnitude of these galaxy candidates is 24.8 mag, which is fainter than the $L^*$ galaxy luminosity at $zsim$ 4. By using our observed $dN/dX$ of strong Mg II absorbers and galaxy candidates median luminosity, we suggest that at high redshift, strong Mg II absorbers tend to have a more disturbed environment but smaller halo size than that at $z <$ 1.
A key uncertainty in galaxy evolution is the physics regulating star formation, ranging from small-scale processes related to the life-cycle of molecular clouds within galaxies to large-scale processes such as gas accretion onto galaxies. We study the imprint of such processes on the time-variability of star formation with an analytical approach tracking the gas mass of galaxies (regulator model). Specifically, we quantify the strength of the fluctuation in the star-formation rate (SFR) on different timescales, i.e. the power spectral density (PSD) of the star-formation history, and connect it to gas inflow and the life-cycle of molecular clouds. We show that in the general case the PSD of the SFR has three breaks, corresponding to the correlation time of the inflow rate, the equilibrium timescale of the gas reservoir of the galaxy, and the average lifetime of individual molecular clouds. On long and intermediate timescales (relative to the dynamical timescale of the galaxy), the PSD is typically set by the variability of the inflow rate and the interplay between outflows and gas depletion. On short timescales, the PSD shows an additional component related to the life-cycle of molecular clouds, which can be described by a damped random walk with a power-law slope of $betaapprox2$ at high frequencies with a break near the average cloud lifetime. We discuss star-formation burstiness in a wide range of galaxy regimes, study the evolution of galaxies about the main sequence ridgeline, and explore the applicability of our method for understanding the star-formation process on cloud-scale from galaxy-integrated measurements.
We present 65 Sloan Digital Sky Survey (SDSS) spectra of 62 star-forming galaxies with oxygen abundances 12 + logO/H ~ 7.5-8.4. Redshifts of selected galaxies are in the range z~0.36-0.70. This allows us to detect the redshifted MgII 2797,2803 emission lines. Our aim is to use these lines for the magnesium abundance determination. The MgII emission was detected in ~2/3 of the galaxies. We find that the MgII 2797 emission-line intensity follows a trend with the excitation parameter x= O^{2+}/O that is similar to that predicted by CLOUDY photoionised HII region models, suggesting a nebular origin of MgII emission. The Mg/O abundance ratio is lower by a factor ~2 than the solar ratio. This is probably the combined effect of interstellar MgII absorption and depletion of Mg onto dust. However, the effect of dust depletion in selected galaxies, if present, is small, by a factor of ~2 lower than that of iron.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا