Do you want to publish a course? Click here

Analog quantum error correction with encoding a qubit into an oscillator

100   0   0.0 ( 0 )
 Added by Kosuke Fukui
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

To implement fault-tolerant quantum computation with continuous variables, Gottesman-Kitaev-Preskill (GKP) qubits have been recognized as an important technological element. However, the analog outcome of GKP qubits, which includes beneficial information to improve the error tolerance, has been wasted, because the GKP qubits have been treated as only discrete variables. In this paper, we propose a hybrid quantum error correction approach that combines digital information with the analog information of the GKP qubits using the maximum-likelihood method. As an example, we demonstrate that the three-qubit bit-flip code can correct double errors, whereas the conventional method based on majority voting on the binary measurement outcome can correct only a single error. As another example, a concatenated code known as Knills C4/C6 code can achieve the hashing bound for the quantum capacity of the Gaussian quantum channel. To the best of our knowledge, this approach is the first attempt to draw both digital and analog information from a single quantum state to improve quantum error correction performance.



rate research

Read More

To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However,it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code.Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large scale cluster states for the topologically protected measurement based quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large scale quantum computation.
105 - Jiri Vala , K. Birgitta Whaley , 2005
We present a scheme for correcting qubit loss error while quantum computing with neutral atoms in an addressable optical lattice. The qubit loss is first detected using a quantum non-demolition measurement and then transformed into a standard qubit error by inserting a new atom in the vacated lattice site. The logical qubit, encoded here into four physical qubits with the Grassl-Beth-Pellizzari code, is reconstructed via a sequence of one projective measurement, two single-qubit gates, and three controlled-NOT operations. No ancillary qubits are required. Both quantum non-demolition and projective measurements are implemented using a cavity QED system which can also detect a general leakage error and thus allow qubit loss to be corrected within the same framework. The scheme can also be applied in quantum computation with trapped ions or with photons.
Quantum computers promise to solve certain problems exponentially faster than possible classically but are challenging to build because of their increased susceptibility to errors. Remarkably, however, it is possible to detect and correct errors without destroying coherence by using quantum error correcting codes [1]. The simplest of these are the three-qubit codes, which map a one-qubit state to an entangled three-qubit state and can correct any single phase-flip or bit-flip error of one of the three qubits, depending on the code used [2]. Here we demonstrate both codes in a superconducting circuit by encoding a quantum state as previously shown [3,4], inducing errors on all three qubits with some probability, and decoding the error syndrome by reversing the encoding process. This syndrome is then used as the input to a three-qubit gate which corrects the primary qubit if it was flipped. As the code can recover from a single error on any qubit, the fidelity of this process should decrease only quadratically with error probability. We implement the correcting three-qubit gate, known as a conditional-conditional NOT (CCNot) or Toffoli gate, using an interaction with the third excited state of a single qubit, in 63 ns. We find 85pm1% fidelity to the expected classical action of this gate and 78pm1% fidelity to the ideal quantum process matrix. Using it, we perform a single pass of both quantum bit- and phase-flip error correction with 76pm0.5% process fidelity and demonstrate the predicted first-order insensitivity to errors. Concatenating these two codes and performing them on a nine-qubit device would correct arbitrary single-qubit errors. When combined with recent advances in superconducting qubit coherence times [5,6], this may lead to scalable quantum technology.
Fault-tolerant quantum computing demands many qubits with long lifetimes to conduct accurate quantum gate operations. However, external noise limits the computing time of physical qubits. Quantum error correction codes may extend such limits, but imperfect gate operations introduce errors to the correction procedure as well. The additional gate operations required due to the physical layout of qubits exacerbate the situation. Here, we use density-matrix simulations to investigate the performance change of logical qubits according to quantum error correction codes and qubit layouts and the expected performance of logical qubits with gate operation time and gate error rates. Considering current qubit technology, the small quantum error correction codes are chosen. Assuming 0.1% gate error probability, a logical qubit encoded by a 5-qubit quantum error correction code is expected to have a fidelity 0.25 higher than its physical counterpart.
We discuss two methods to encode one qubit into six physical qubits. Each of our two examples corrects an arbitrary single-qubit error. Our first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuit, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender and the receiver and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receivers half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the senders side. We discuss the advantages and disadvantages for each of the two codes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا