No Arabic abstract
We investigate the stellar-mass Tully-Fisher relation (TFR) between the stellar mass and the integrated gas velocity dispersion, quantified by the kinematic estimator S_0.5 measured from strong emission lines in spectra of galaxies at 0<z<5. We combine luminosity-selected galaxies (`high-luminosity sample) with galaxies selected in other ways (`low-luminosity sample) to cover a range in stellar mass that spans almost five orders of magnitude: 7.0 < log M* < 11.5. We find that the logarithmic power-law slope and normalisation of the TFR are independent of redshift out to z~3. The scatter in the TFR is <0.5 dex such that the gas velocity dispersion can be used as a proxy for the stellar mass of a galaxy independently of its redshift. At z>3 the scatter increases and the existence of a correlation is not obvious. The high-luminosity sample exhibits a flatter slope of 1.5$pm$0.2 at z<3 compared to the low-luminosity sample slope of 2.9$pm$0.3, suggesting a turnover in the TFR. The combined sample is well fit with a break in the TFR at a characteristic stellar mass scale of M*~10$^{10}$ M$_{odot}$, with no significant evolution out to z~3. We demonstrate that a break in the TFR with a steeper slope at the low-mass end is a natural consequence of galaxy models with a mass-dependent stellar to halo-mass ratio.
We investigate the Tully-Fisher Relation (TFR) for a morphologically and kine- matically diverse sample of galaxies from the SAMI Galaxy Survey using 2 dimensional spatially resolved Halpha velocity maps and find a well defined relation across the stellar mass range of 8.0 < log(M*) < 11.5. We use an adaptation of kinemetry to parametrise the kinematic Halpha asymmetry of all galaxies in the sample, and find a correlation between scatter (i.e. residuals off the TFR) and asymmetry. This effect is pronounced at low stellar mass, corresponding to the inverse relationship between stellar mass and kinematic asymmetry found in previous work. For galaxies with log(M*) < 9.5, 25 +/- 3% are scattered below the root mean square (RMS) of the TFR, whereas for galaxies with log(M*) > 9.5 the fraction is 10 +/- 1% We use simulated slits to directly compare our results with those from long slit spectroscopy and find that aligning slits with the photometric, rather than the kinematic, position angle, increases global scatter below the TFR. Further, kinematic asymmetry is correlated with misalignment between the photometric and kinematic position angles. This work demonstrates the value of 2D spatially resolved kinematics for accurate TFR studies; integral field spectroscopy reduces the underestimation of rotation velocity that can occur from slit positioning off the kinematic axis.
Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey, we present the stellar mass Tully-Fisher relation at 2.0 < z < 2.5. The sample was drawn from a stellar mass limited, Ks-band selected catalog from ZFOURGE over the CANDELS area in the COSMOS field. We model the shear of the Halpha emission line to derive rotational velocities at 2.2X the scale radius of an exponential disk (V2.2). We correct for the blurring effect of a two-dimensional PSF and the fact that the MOSFIRE PSF is better approximated by a Moffat than a Gaussian, which is more typically assumed for natural seeing. We find for the Tully-Fisher relation at 2.0 < z < 2.5 that logV2.2 =(2.18 +/- 0.051)+(0.193 +/- 0.108)(logM/Msun - 10) and infer an evolution of the zeropoint of Delta M/Msun = -0.25 +/- 0.16 dex or Delta M/Msun = -0.39 +/- 0.21 dex compared to z = 0 when adopting a fixed slope of 0.29 or 1/4.5, respectively. We also derive the alternative kinematic estimator S0.5, with a best-fit relation logS0.5 =(2.06 +/- 0.032)+(0.211 +/- 0.086)(logM/Msun - 10), and infer an evolution of Delta M/Msun= -0.45 +/- 0.13 dex compared to z < 1.2 if we adopt a fixed slope. We investigate and review various systematics, ranging from PSF effects, projection effects, systematics related to stellar mass derivation, selection biases and slope. We find that discrepancies between the various literature values are reduced when taking these into account. Our observations correspond well with the gradual evolution predicted by semi-analytic models.
We study the location of massive disk galaxies on the Tully-Fisher relation. Using a combination of K-band photometry and high-quality rotation curves, we show that in traditional formulations of the TF relation (using the width of the global HI profile or the maximum rotation velocity), galaxies with rotation velocities larger than 200 km/s lie systematically to the right of the relation defined by less massive systems, causing a characteristic `kink in the relations. Massive, early-type disk galaxies in particular have a large offset, up to 1.5 magnitudes, from the main relation defined by less massive and later-type spirals. The presence of a change in slope at the high-mass end of the Tully-Fisher relation has important consequences for the use of the Tully-Fisher relation as a tool for estimating distances to galaxies or for probing galaxy evolution. In particular, the luminosity evolution of massive galaxies since z = 1 may have been significantly larger than estimated in several recent studies. We also show that many of the galaxies with the largest offsets have declining rotation curves and that the change in slope largely disappears when we use the asymptotic rotation velocity as kinematic parameter. The remaining deviations from linearity can be removed when we simultaneously use the total baryonic mass (stars + gas) instead of the optical or near-infrared luminosity. Our results strengthen the view that the Tully-Fisher relation fundamentally links the mass of dark matter haloes with the total baryonic mass embedded in them.
We analyse the Tully-Fisher relation at moderate redshift from the point of view of the underlying stellar populations, by comparing optical and NIR photometry with a phenomenological model that combines population synthesis with a simple prescription for chemical enrichment. The sample comprises 108 late-type galaxies extracted from the FORS Deep Field (FDF) and William Herschel Deep Field (WHDF) surveys at z<1 (median redshift z=0.45). A correlation is found between stellar mass and the parameters that describe the star formation history, with massive galaxies forming their populations early (zFOR~3), with star formation timescales, tau1~4Gyr; although with very efficient chemical enrichment timescales (tau2~1Gyr). In contrast, the stellar-to-dynamical mass ratio - which, in principle, would track the efficiency of feedback in the baryonic processes driving galaxy formation - does not appear to correlate with the model parameters. On the Tully-Fisher plane, no significant age segregation is found at fixed circular speed, whereas at fixed stellar-to-dynamical mass fraction, age splits the sample, with older galaxies having faster circular speeds at fixed Ms/Mdyn. Although our model does not introduce any prior constraint on dust reddening, we obtain a strong correlation between colour excess and stellar mass.
We combine newly measured rotation velocities, velocity dispersions, and stellar masses to construct stellar mass Tully-Fisher relations (M*TFRs) for 544 galaxies with strong emission lines at 0.1<z<1.2 from the All Wavelength Extended Groth Strip International Survey (AEGIS) and the Deep Extragalactic Evolutionary Probe 2 Survey (DEEP2). The conventional M*TFR using only rotation velocity (Vrot) shows large scatter (~1.5 dex in velocity). The scatter and residuals are correlated with morphology in the sense that disturbed, compact, and major merger galaxies have lower velocities for their masses. We construct an M*TFR using the kinematic estimator S_0.5 which is defined as sqrt(0.5Vrot^2 + sigma_g^2) and accounts for disordered or non-circular motions through the gas velocity dispersion (sigma_g). The new M*TFR, termed S_0.5/M*TFR, is remarkably tight over 0.1<z<1.2 with no detectable evolution of its intercept or slope with redshift. The average best fit relation has 0.47 dex scatter in stellar mass, corresponding to ~1.2 magnitudes, assuming a constant mass-to-light ratio. Interestingly, the S_0.5/M*TFR is consistent with the absorption-line based stellar mass Faber-Jackson relation for nearby elliptical galaxies in terms of slope and intercept, which might suggest a physical connection between the two relations.