Do you want to publish a course? Click here

Modeling of the outburst on July 29th, 2015 observed with OSIRIS cameras in the southern hemisphere of comet 67P/Churyumov-Gerasimenko

298   0   0.0 ( 0 )
 Added by Adeline Gicquel
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Images of the nucleus and the coma (gas and dust) of comet 67P/Churyumov- Gerasimenko have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras since March 2014 using both the Wide Angle Camera (WAC) and the Narrow Angle Camera (NAC). We use images from the NAC camera to study a bright outburst observed in the southern hemisphere on July 29, 2015. The high spatial resolution of the NAC is needed to localize the source point of the outburst on the surface of the nucleus. The heliocentric distance is 1.25 au and the spacecraft-comet distance is 186 km. Aiming to better understand the physics that led to the outgassing, we used the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus and the dust trajectories. The goal is to understand the mechanisms producing the outburst. We reproduce the opening angle of the outburst in the model and constrain the outgassing ratio between the outburst source and the local region. The outburst is in fact a combination of both gas and dust, in which the active surface is approximately 10 times more active than the average rate found in the surrounding areas. We need a number of dust particles 7.83 $times$ 10$^{11}$ - 6.90 $times$ 10$^{15}$ (radius 1.97 - 185 {mu}m), which corresponds to a mass of dust 220 - 21 $times$ 10$^{3}$kg.



rate research

Read More

Aims. We aim to determine whether dissociative excitation of cometary neutrals by electron impact is the major source of far-ultraviolet (FUV) emissions at comet 67P/Churyumov-Gerasimenko in the southern hemisphere at large heliocentric distances, both during quiet conditions and impacts of corotating interaction regions observed in the summer of 2016. Methods. We combined multiple datasets from the Rosetta mission through a multi-instrument analysis to complete the first forward modelling of FUV emissions in the southern hemisphere of comet 67P and compared modelled brightnesses to observations with the Alice FUV imaging spectrograph. We modelled the brightness of OI1356, OI1304, Lyman-$beta$, CI1657, and CII1335 emissions, which are associated with the dissociation products of the four major neutral species in the coma: CO$_2$, H$_2$O, CO, and O$_2$. The suprathermal electron population was probed by RPC/IES and the neutral column density was constrained by several instruments: ROSINA, MIRO and VIRTIS. Results. The modelled and observed brightnesses of the FUV emission lines agree closely when viewing nadir and dissociative excitation by electron impact is shown to be the dominant source of emissions away from perihelion. The CII1335 emissions are shown to be consistent with the volume mixing ratio of CO derived from ROSINA. When viewing the limb during the impacts of corotating interaction regions, the model reproduces brightnesses of OI1356 and CI1657 well, but resonance scattering in the extended coma may contribute significantly to the observed Lyman-$beta$ and OI1304 emissions. The correlation between variations in the suprathermal electron flux and the observed FUV line brightnesses when viewing the comets limb suggests electrons are accelerated on large scales and that they originate in the solar wind. This means that the FUV emissions are auroral in nature.
Beginning in March 2014, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comets dust jets. We analyzed the dust monitoring observations shortly after the southern vernal equinox on May 30 and 31, 2015 with the WAC at the heliocentric distance Rh = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this article was that through the sublimation of the aggregates of dirty grains (radius a between 5 microm and 50 microm) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data we needed to inject a number of aggregates between 8.5 x $10^{13}$ and 8.5 x $10^{10}$ for a = 5 microm and 50 microm respectively, or an initial mass of $H_2O$ ice around 22kg.
137 - H. Rickman 2015
One of the main aims of the ESA Rosetta mission is to study the origin of the solar system by exploring comet 67P/Churyumov-Gerasimenko at close range. In this paper we discuss the origin and evolution of comet 67P/Churyumov-Gerasimenko in relation to that of comets in general and in the framework of current solar system formation models. We use data from the OSIRIS scientific cameras as basic constraints. In particular, we discuss the overall bi-lobate shape and the presence of key geological features, such as layers and fractures. We also treat the problem of collisional evolution of comet nuclei by a particle-in-a-box calculation for an estimate of the probability of survival for 67P/Churyumov-Gerasimenko during the early epochs of the solar system. We argue that the two lobes of the 67P/Churyumov-Gerasimenko nucleus are derived from two distinct objects that have formed a contact binary via a gentle merger. The lobes are separate bodies, though sufficiently similar to have formed in the same environment. An estimate of the collisional rate in the primordial, trans-planetary disk shows that most comets of similar size to 67P/Churyumov-Gerasimenko are likely collisional fragments, although survival of primordial planetesimals cannot be excluded. A collisional origin of the contact binary is suggested, and the low bulk density of the aggregate and abundance of volatile species show that a very gentle merger must have occurred. We thus consider two main scenarios: the primordial accretion of planetesimals, and the re-accretion of fragments after an energetic impact onto a larger parent body. We point to the primordial signatures exhibited by 67P/Churyumov-Gerasimenko and other comet nuclei as critical tests of the collisional evolution.
We show that the scattering phase functions of the coma and the nucleus of the comet 67P/Churyumov-Gerasimenko measured by the Rosetta/OSIRIS instrument can be reproduced by a particle model involving clustered densely packed submicrometer-sized grains composed of organic material and larger micrometer-sized silicate grains. The simulated and measured coma phase functions suggest that near the nucleus scattering is dominated by large particles, and the size distribution of dust particles varies with time and/or local coma environment. Further, we show that the measured nucleus phase function is consistent with the coma phase function by modelling a nucleus-sized object consisting of the same particles that explain the coma phase functions.
We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the OSIRIS instrument during the closest fly-by over the comet, which took place on 14 th February 2015 at a distance of {~} 6 km from the surface. Several images covering the 0{deg}-33{deg} phase angle range were acquired, and the spatial resolution achieved was 11 cm/pxl. The flown-by region is located on the big lobe of the comet, near the borders of the Ash, Apis and Imhotep regions. Our analysis shows that this region features local heterogeneities at the decimetre scale. We observed difference of reflectance up to 40{%} between bright spots and sombre regions, and spectral slope variations up to 50{%}. The spectral reddening effect observed globally on the comet surface by Fornasier et al. (2015) is also observed locally on this region, but with a less steep behaviour. We note that numerous metre-sized boulders, which exhibit a smaller opposition effect, also appear spectrally redder than their surroundings. In this region, we found no evidence linking observed bright spots to exposed water-ice-rich material. We fitted our dataset using the Hapke 2008 photometric model. The region overflown is globally as dark as the whole nucleus (geometric albedo of 6.8{%}) and it has a high porosity value in the uppermost-layers (86{%}). These results of the photometric analysis at a decimetre scale indicate that the photometric properties of the flown-by region are similar to those previously found for the whole nucleus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا