On the algebraic variety of Hom-Lie algebras


Abstract in English

The set HLie(n) of the n-dimensional Hom-Lie algebras over an algebraically closed field of characteristic zero is provided with a structure of algebraic subvariety of the affine plane of dimension n^2(n-1)/2}. For n=3, these two sets coincide, for n=4 it is an hypersurface in K^{24}. For n>4, we describe the scheme of polynomial equations which define HLie(n). We determine also what are the classes of Hom-Lie algebras which are P-algebras where P is a binary quadratic operads.

Download