No Arabic abstract
Using a perturbative renormalization group approach, we show that the extended ($J_1$-$J_2$-$J_d$) Heisenberg model on the kagome lattice with a staggered chiral interaction ($J_chi$) can exhibit a gapless chiral quantum spin liquid phase. Within a coupled-chains construction, this phase can be understood as a chiral sliding Luttinger liquid with algebraic decay of spin correlations along the chain directions. We calculate the low-energy properties of this gapless chiral spin liquid using the effective field theory and show that they are compatible with the predictions from parton mean-field theories with symmetry-protected line Fermi surfaces. These results may be relevant to the state observed in the kapellasite material.
Motivated by recent experiments on the Heisenberg S=1/2 quantum spin liquid candidate material kapellasite, we classify all possible chiral (time-reversal symmetry breaking) spin liquids with fermionic spinons on the kagome lattice. We obtain the phase diagram for the physically relevant extended Heisenberg model, comparing the energies of a wide range of microscopic variational wave functions. We propose that, at low temperature, kapellasite exhibits a gapless chiral spin liquid phase with spinon Fermi surfaces. This two-dimensional state inherits many properties of the nearby one-dimensional phase of decoupled anti-ferromagnetic spin chains, but also shows some remarkable differences. We discuss the spin structure factors and other physical properties.
We study $S=1$ spin liquid states on the kagome lattice constructed by Gutzwiller-projected $p_x+ip_y$ superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices $S$ and $T$, we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the $SO(3)_1$ (or, equivalently, $SU(2)_2$) field theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study we observe a topological phase transition from the NACSL to the $Z_2$ Abelian spin liquid.
We study the nearest neighbor $XXZ$ Heisenberg quantum antiferromagnet on the kagome lattice. Here we consider the effects of several perturbations: a) a chirality term, b) a Dzyaloshinski-Moriya term, and c) a ring-exchange type term on the bowties of the kagome lattice, and inquire if they can suppport chiral spin liquids as ground states. The method used to study these Hamiltonians is a flux attachment transformation that maps the spins on the lattice to fermions coupled to a Chern-Simons gauge field on the kagome lattice. This transformation requires us to consistently define a Chern-Simons term on the kagome lattice. We find that the chirality term leads to a chiral spin liquid even in the absence of an uniform magnetic field, with an effective spin Hall conductance of $sxy = frac{1}{2}$ in the regime of $XY$ anisotropy. The Dzyaloshinkii-Moriya term also leads a similar chiral spin liquid but only when this term is not too strong. An external magnetic field also has the possibility of giving rise to additional plateaus which also behave like chiral spin liquids in the $XY$ regime. Finally, we consider the effects of a ring-exchange term and find that, provided its coupling constant is large enough, it may trigger a phase transition into a chiral spin liquid by the spontaneous breaking of time-reversal invariance.
The nature of the ground state of the spin $S=1/2$ Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings $J_{vartriangle}$ and $J_{triangledown}$ within elementary up- and down-pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and Monte Carlo methods. We analyze the stability of the U(1) Dirac spin liquid with respect to the presence of fermionic pairing that leads to a gapped $mathbb{Z}_{2}$ spin liquid. For several values of the ratio $J_{triangledown}/J_{vartriangle}$, the size scaling of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss the competition with the simplex $mathbb{Z}_{2}$ resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly anisotropic regime, i.e., $J_{triangledown} ll J_{vartriangle}$.
A preponderance of evidence suggests that the ground state of the nearest-neighbor $S = 1/2$ antiferromagnetic Heisenberg model on the kagome lattice is a gapless spin liquid. Many candidate materials for the realization of this model possess in addition a Dzyaloshinskii-Moriya (DM) interaction. We study this system by tensor-network methods and deduce that a weak but finite DM interaction is required to destabilize the gapless spin-liquid state. The critical magnitude, $D_c/J simeq 0.012(2)$, lies well below the DM strength proposed in the kagome material herbertsmithite, indicating a need to reassess the apparent spin-liquid behavior reported in this system.