Flux growth in a horizontal configuration: an analogue to vapor transport growth


Abstract in English

Flux growth of single crystals is normally performed in a vertical configuration with an upright refractory container holding the flux melt. At high temperatures, flux dissolves the charge forming a homogeneous solution before nucleation and growth of crystals take place under proper supersaturation generated by cooling or evaporating the flux. In this work, we report flux growth in a horizontal configuration with a temperature gradient along the horizontal axis: a liquid transport growth analogous to the vapor transport technique. In a typical liquid transport growth, the charge is kept at the hot end of the refractory container and the flux melt dissolves the charge and transfers it to the cold end. Once the concentration of charge is above the solubility limit at the cold end, the thermodynamically stable phase nucleates and grows. Compared to the vertical flux growth, the liquid transport growth can provide a large quantity of crystals in a single growth since the charge/flux ratio is not limited by the solubility limit at the growth temperature. This technique is complementary to the vertical flux growth and can be considered when a large amount of crystals are needed but the yield from the conventional vertical flux growth is limited. We applied this technique to the growth of IrSb$_3$, Mo$_3$Sb$_7$, MnBi from self flux, and the growth of FeSe, CrTe$_3$, NiPSe$_3$, FePSe$_3$, and InCuP$_2$S$_6$ from a halide flux.

Download