The study of the properties of quantum particles in a periodic potential subject to a magnetic field is an active area of research both in physics and mathematics; it has been and it is still deeply investigated. In this review we discuss how to implement and describe tunable Abelian magnetic fields in a system of ultracold atoms in optical lattices. After discussing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold set-ups, we study cubic lattice tight-binding models with commensurate flux. We finally examine applications of gauge potentials in one-dimensional rings.
We analyze a tight-binding model of ultracold fermions loaded in an optical square lattice and subjected to a synthetic non-Abelian gauge potential featuring both a magnetic field and a translationally invariant SU(2) term. We consider in particular the effect of broken time-reversal symmetry and its role in driving non-trivial topological phase transitions. By varying the spin-orbit coupling parameters, we find both a semimetal/insulator phase transition and a topological phase transition between insulating phases with different numbers of edge states. The spin is not a conserved quantity of the system and the topological phase transitions can be detected by analyzing its polarization in time of flight images, providing a clear diagnostic for the characterization of the topological phases through the partial entanglement between spin and lattice degrees of freedom.
In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb lattice model, without the need of additional laser fields. This greatly simplifies the proposed implementations, requiring only spatial modulations of the intensity of the laser beams. We finally suggest several experiments to observe the properties of the Dirac field in the setup.
We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general space-independent non-Abelian gauge potential. We first review and analyze the case of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving $pi$ and $2pi/3$ magnetic fluxes. Finally, we numerically study the effect of random flux perturbations.
The use of coherent optical dressing of atomic levels allows the coupling of ultracold atoms to effective gauge fields. These can be used to generate effective magnetic fields, and have the potential to generate non-Abelian gauge fields. We consider a model of a gas of bosonic atoms coupled to a gauge field with U(2) symmetry, and with constant effective magnetic field. We include the effects of weak contact interactions by applying Gross-Pitaevskii mean-field theory. We study the effects of a U(2) non-Abelian gauge field on the vortex lattice phase induced by a uniform effective magnetic field, generated by an Abelian gauge field or, equivalently, by rotation of the gas. We show that, with increasing non-Abelian gauge field, the nature of the groundstate changes dramatically, with structural changes of the vortex lattice. We show that the effect of the non-Abelian gauge field is equivalent to the introduction of effective interactions with non-zero range. We also comment on the consequences of the non-Abelian gauge field for strongly correlated fractional quantum Hall states.
On the basis of recent results extending non-trivially the Poincare symmetry, we investigate the properties of bosonic multiplets including $2-$form gauge fields. Invariant free Lagrangians are explicitly built which involve possibly $3-$ and $4-$form fields. We also study in detail the interplay between this symmetry and a U(1) gauge symmetry, and in particular the implications of the automatic gauge-fixing of the latter associated to a residual gauge invariance, as well as the absence of self-interaction terms.