Do you want to publish a course? Click here

Differential Cross Section Measurements for $gamma ntopi^-p$ Above the First Nucleon Resonance Region

121   0   0.0 ( 0 )
 Added by Paul Mattione
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The quasi-free $gamma dtopi^{-}p(p)$ differential cross section has been measured with CLAS at photon beam energies $E_gamma$ from 0.445 GeV to 2.510 GeV (corresponding to $W$ from 1.311 GeV to 2.366 GeV) for pion center-of-mass angles $costheta_pi^{c.m.}$ from -0.72 to 0.92. A correction for final state interactions has been applied to this data to extract the $gamma ntopi^-p$ differential cross sections. These cross sections are quoted in 8428 $(E_gamma,costheta_pi^{c.m.})$ bins, a factor of nearly three increase in the world statistics for this channel in this kinematic range. These new data help to constrain coupled-channel analysis fits used to disentangle the spectrum of $N^*$ resonances and extract their properties. Selected photon decay amplitudes $N^* to gamma n$ at the resonance poles are determined for the first time and are reported here.



rate research

Read More

We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
The interpretation of the most recent solar neutrinos experiments requires a good knowledge of the cross section of the reaction 7Be(p,gamma)8B at very small energy (Ecm=18 keV). We have recently measured this cross section for Ecm=0.35-1.4 MeV and for Ecm=0.112-0.190 MeV. We report here on the description of the preparation of the radioactive targets of 7Be used in these experiments.
We measured the 7Be(p,gamma)8B cross section from E_cm = 186 to 1200 keV, with a statistical-plus-systematic precision per point of better than +- 5%. All important systematic errors were measured including 8B backscattering losses. We obtain S_17(0) = 22.3 +- 0.7(expt) +- 0.5(theor) eV-b from our data at E_cm <= 300 keV and the theory of Descouvemont and Baye.
We report the first experimental measurements of the nine 1-fold differential cross sections for the $gamma p to pi^+pi^-p$ reaction, obtained with the CLAS detector at Jefferson Laboratory. The measurements cover the invariant mass range of the final state hadrons from 1.6~GeV~$<W<$~2.0~GeV. For the first time the photocouplings of all prominent nucleon resonances in this mass range have been extracted from this exclusive channel. Photoproduction of two charged pions is of particular importance for the evaluation of the photocouplings for the $Delta(1620)1/2^-$, $Delta(1700)3/2^-$, $N(1720)3/2^+$, and $Delta(1905)5/2^+$ resonances, which have dominant decays into the $pipi N$ final states rather than the more extensively studied single meson decay channels.
High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the worlds large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا