No Arabic abstract
A central theme in classical algorithms for the reconstruction of discontinuous functions from observational data is perimeter regularization via the use of the total variation. On the other hand, sparse or noisy data often demands a probabilistic approach to the reconstruction of images, to enable uncertainty quantification; the Bayesian approach to inversion, which itself introduces a form of regularization, is a natural framework in which to carry this out. In this paper the link between Bayesian inversion methods and perimeter regularization is explored. In this paper two links are studied: (i) the maximum a posteriori (MAP) objective function of a suitably chosen Bayesian phase-field approach is shown to be closely related to a least squares plus perimeter regularization objective; (ii) sample paths of a suitably chosen Bayesian level set formulation are shown to possess finite perimeter and to have the ability to learn about the true perimeter.
The level set approach has proven widely successful in the study of inverse problems for interfaces, since its systematic development in the 1990s. Recently it has been employed in the context of Bayesian inversion, allowing for the quantification of uncertainty within the reconstruction of interfaces. However the Bayesian approach is very sensitive to the length and amplitude scales in the prior probabilistic model. This paper demonstrates how the scale-sensitivity can be circumvented by means of a hierarchical approach, using a single scalar parameter. Together with careful consideration of the development of algorithms which encode probability measure equivalences as the hierarchical parameter is varied, this leads to well-defined Gibbs based MCMC methods found by alternating Metropolis-Hastings updates of the level set function and the hierarchical parameter. These methods demonstrably outperform non-hierarchical Bayesian level set methods.
Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimers disease.
We introduce the UPG package for highly efficient Bayesian inference in probit, logit, multinomial logit and binomial logit models. UPG offers a convenient estimation framework for balanced and imbalanced data settings where sampling efficiency is ensured through Markov chain Monte Carlo boosting methods. All sampling algorithms are implemented in C++, allowing for rapid parameter estimation. In addition, UPG provides several methods for fast production of output tables and summary plots that are easily accessible to a broad range of users.
Multiple kernel learning (MKL), structured sparsity, and multi-task learning have recently received considerable attention. In this paper, we show how different MKL algorithms can be understood as applications of either regularization on the kernel weights or block-norm-based regularization, which is more common in structured sparsity and multi-task learning. We show that these two regularization strategies can be systematically mapped to each other through a concave conjugate operation. When the kernel-weight-based regularizer is separable into components, we can naturally consider a generative probabilistic model behind MKL. Based on this model, we propose learning algorithms for the kernel weights through the maximization of marginal likelihood. We show through numerical experiments that $ell_2$-norm MKL and Elastic-net MKL achieve comparable accuracy to uniform kernel combination. Although uniform kernel combination might be preferable from its simplicity, $ell_2$-norm MKL and Elastic-net MKL can learn the usefulness of the information sources represented as kernels. In particular, Elastic-net MKL achieves sparsity in the kernel weights.
Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when using this approach within ABC, the posterior variance is inflated, thus resulting in biased posterior inference. Here we use stratified Monte Carlo to considerably reduce the bias induced by data resampling. We also show empirically that it is possible to obtain reliable inference using a larger than usual ABC threshold. Finally, we show that with stratified Monte Carlo we obtain a less variable ABC likelihood. Ultimately we show how our approach improves the computational efficiency of the ABC samplers. We construct several ABC samplers employing our methodology, such as rejection and importance ABC samplers, and ABC-MCMC samplers. We consider simulation studies for static (Gaussian, g-and-k distribution, Ising model, astronomical model) and dynamic models (Lotka-Volterra). We compare against state-of-art sequential Monte Carlo ABC samplers, synthetic likelihoods, and likelihood-free Bayesian optimization. For a computationally expensive Lotka-Volterra case study, we found that our strategy leads to a more than 10-fold computational saving, compared to a sampler that does not use our novel approach.