Additive decomposition of iterative quantum search operations in the Grover-type algorithm


Abstract in English

In the Grover-type quantum search process a search operator is iteratively applied, say, k times, on the initial database state. We present an additive decomposition scheme such that the iteration process is expressed, in the computational space, as a linear combination of k operators, each of which consists of a single Grover-search followed by an overall phase-rotation. The value of k and the rotation phase are the same as those determined in the framework of the search with certainty. We further show that the final state can be expressed in terms of a single oracle operator of the Grover-search and phase-rotation factors. We discuss how the additive form can be utilized so that it effectively reduces the computational load of the iterative search, and we propose an effective shortcut gate that realizes the same outcome as the iterative search.

Download