No Arabic abstract
Characteristic classes in space-time manifolds are discussed for both even- and odd-dimensional spacetimes. In particular, it is shown that the Einstein--Hilbert action is equivalent to a second Chern-class on a modified Poincare bundle in four dimensions. Consequently, the cosmological constant and the trace of an energy-momentum tensor become divisible modulo R/Z.
From Einsteins theory we know that besides the electromagnetic spectrum, objects like quasars, active galactic nuclei, pulsars and black holes also generate a physical signal of purely gravitational nature. The actual form of the signal is impossible to determine analytically, which lead to use of numerical methods. Two major approaches emerged. The first one formulates the gravitational radiation problem as a standard Cauchy initial value problem, while the other approach uses a Characteristic Initial value formulation. In the strong field region, where caustics in the wavefronts are likely to form, the Cauchy formulation is more advantageous. On the other side, the Characteristic formulation is uniquely suited to study radiation problems because it describes space-time in terms of radiation wavefronts. The fact that the advantages and disadvantages of these two systems are complementary suggests that one may want to use the two of them together. In a full nonlinear problem it would be advantageous to evolve the inner (strong field) region using Cauchy evolution and the outer (radiation) region with the Characteristic approach. Cauchy Characteristic Matching enables one to evolve the whole space-time matching the boundaries of Cauchy and Characteristic evolution. The methodology of Cauchy Characteristic Matching has been successful in numerical evolution of the spherically symmetric Klein-Gordon-Einstein field equations as well as for 3-D non-linear wave equations. In this thesis the same methodology is studied in the context of the Einstein equations.
We implement a spatially fixed mesh refinement under spherical symmetry for the characteristic formulation of General Relativity. The Courant-Friedrich-Levy (CFL) condition lets us deploy an adaptive resolution in (retarded-like) time, even for the nonlinear regime. As test cases, we replicate the main features of the gravitational critical behavior and the spacetime structure at null infinity using the Bondi mass and the News function. Additionally, we obtain the global energy conservation for an extreme situation, i.e. in the threshold of the black hole formation. In principle, the calibrated code can be used in conjunction with an ADM 3+1 code to confirm the critical behavior recently reported in the gravitational collapse of a massless scalar field in an asymptotic anti-de Sitter spacetime. For the scenarios studied, the fixed mesh refinement offers improved runtime and results comparable to code without mesh refinement.
We consider the thermodynamic properties of the constant curvature black hole solution recently found by Banados. We show that it is possible to compute the entropy and the quasilocal thermodynamics of the spacetime using the Einstein-Hilbert action of General Relativity. The constant curvature black hole has some unusual properties which have not been seen in other black hole spacetimes. The entropy of the black hole is not associated with the event horizon; rather it is associated with the region between the event horizon and the observer. Further, surfaces of constant internal energy are not isotherms so the first law of thermodynamics exists only in an integral form. These properties arise from the unusual topology of the Euclidean black hole instanton.
In this work we examine what are the cosmological implications of allowing the geometrical curvature density to behave independently from the energy density contents. Using the full data extracted by Planck mission from CMB, combined with BAO and SNIa measurements, we derive, in the light of this approach, new constraints on the cosmological parameters. In particular we determine the behavior of the curvature dark energy degeneracy when allowing a varying equation of state for the latter. We also examine whether this approach could bridge the gap recently found between the Hubble parameter value determined from CMB and that from the local universe measurements
This lecture will present a review of the past and present tests of the General Relativity theory. The essentials of the theory will be recalled and the measurable effects will be listed and analyzed. The main historical confirmations of General Relativity will be described. Then, the present situation will be reviewed presenting a number of examples. The opportunities given by astrophysical and astrometric observations will be shortly discussed. Coming to terrestrial experiments the attention will be specially focused on ringlasers and a dedicated experiment for the Gran Sasso Laboratories, named by the acronym GINGER, will be presented. Mention will also be made of alternatives to the use of light, such as particle beams and superfluid rings.