No Arabic abstract
Concepts of high precision studies of the one-way speed of light anisotropy are discussed. The high energy particle beam allows measurement of a one-way speed of light anisotropy (SOLA) via analysis of the beam momentum variation with sidereal phase without the use of synchronized clocks. High precision beam position monitors could provide accurate monitoring of the beam orbit and determination of the particle beam momentum with relative accuracy on the level of $10^{-10}$, which corresponds to a limit on SOLA of $10^{-18}$ with existing storage rings. A few addition
We report that a triangular Fabry-Perot resonator filled with a parity-odd linear anisotropic medium exhibiting the one-way light speed anisotropy acts as a perfect diode. A Linear crystal such as the nematic liquid crystals whose molecular structures break parity can exhibit the one-way light speed anisotropy. The one-way light speed anisotropy also can be induced in a non-linear medium in the presence of constant electric and magnetic field strengths.
A formulation of the one-way speed of light in three-dimensional Euclidean space is derived by a constructive approach. This formulation is consistent with the result of the Michelson-Morley experiment in that the harmonic mean of the outward and return speeds is equal to c, the standard value for the speed of electromagnetic radiation in vacuum. It is also shown that a shift in synchronization, proportional to the distance along the line of motion, renders this speed a constant along all directions.
We first review some aspects of gravitational wave and the thermodynamic expression of Einstein field equations, these achieved conclusions allow people to think of Einsteins gravitational wave as a kind of sound wave in ordinary gas which propagates as an adiabatic compression wave. In the following, using the properties of photon gas in white wall box, we find an analogous relationship between ordinary gas and photon gas through sound velocity formula. At last, by taking the ordinary gas as an intermediary, we find that gravitational wave is analogous to photon gas, or equally, gravitons are analogous to photons although they are different in some ways such as spins and coupling strengths, and these different properties dont affect their propagation speeds. Utilizing this analogous relationship, we achieve the gas model of gravitons and this model naturally gives out the light speed of gravitons
We present a phenomenological model for the nature in the Finsler and Randers space-time geometries. We show that the parity-odd light speed anisotropy perpendicular to the gravitational equipotential surfaces encodes the deviation from the Riemann geometry toward the Randers geometry. We utilize an asymmetrical ring resonator and propose a setup in order to directly measure this deviation. We address the constraints that the current technology will impose on the deviation should the anisotropy be measured on the Earth surface and the orbits of artificial satellites.
We report here the first experimental result for the anisotropy of the one-way maximum attainable speed of the electron, $vec{Delta c_{1,e}}$, obtained via the study of a sidereal time dependence of a difference between the electron and positron beam momenta in the CESR storage ring at Cornell University. At 95 percent confidence, an upper limit for the component of $Delta vec {c}_{1,e}/c$ perpendicular to Earths rotational axis is found to be $5.5 times 10^{-15}$.