No Arabic abstract
The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although the electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker--Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.
X-ray observations of kilo-parsec scale jets indicate that a synchrotron origin of the sustained non-thermal emission is likely. This requires distributed acceleration of electrons up to near PeV energies along the jet. The underlying acceleration mechanism is still unclear. Shear acceleration is a promising candidate, as velocity-shear stratification is a natural consequence of the collimated flow of a jet. We study the details of shear acceleration by solving the steady-state Fokker-Planck-type equation and provide a simple general solution for trans-relativistic jets for a range of magnetohydrodynamic turbulent power-law spectra. In general, the accelerated particle population is a power-law spectrum with an exponential-like cut-off, where the power-law index is determined by the turbulence spectrum and the balance of escape and acceleration of particles. Adopting a simple linearly decreasing velocity profile in the boundary of large-scale jets, we find that the multi-wavelength spectral energy distribution of X-ray jets, such as Centaurus A and 3C 273, can be reproduced with electrons that are accelerated up to $sim$ PeV. In kpc-scale jets, protons may be accelerated up to $sim$ EeV, supporting the hypothesis that large-scale jets are strong candidates for ultra-high-energy-cosmic-ray sources within the framework of shear acceleration.
In this paper, we investigate the acceleration in relativistic jets of high-energy proton preaccelerated in the magnetosphere of a supermassive black hole. The proton reaches maximum energy when passing the total potential difference of $U$ between the jet axis and its periphery. This voltage is created by a rotating black hole and transmitted along magnetic field lines into the jet. It is shown that the trajectories of proton in the jet are divided into three groups: untrapped, trapped and not accelerated. Untrapped particles are not kept by poloidal and toroidal magnetic fields inside the jet, so they escape out the jet and their energy is equal to the maximum value, $eU$. Trapped protons are moving along the jet with oscillations in the radial direction. Their energy varies around the value of $0.74 eU$. In a strong magnetic field protons preaccelerated in the magnetosphere are pressed to the jet axis and practically are not accelerated in the jet. The work defines acceleration regimes for a range of the most well-known AGN objects with relativistic jets and for the microquasar SS433.
Particle acceleration and heating at mildly relativistic magnetized shocks in electron-ion plasma are investigated with unprecedentedly high-resolution two-dimensional particle-in-cell simulations that include ion-scale shock rippling. Electrons are super-adiabatically heated at the shock, and most of the energy transfer from protons to electrons takes place at or downstream of the shock. We are the first to demonstrate that shock rippling is crucial for the energization of electrons at the shock. They remain well below equipartition with the protons. The downstream electron spectra are approximately thermal with a limited supra-thermal power-law component. Our results are discussed in the context of wakefield acceleration and the modelling of electromagnetic radiation from blazar cores.
SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star). Two jets of ionized matter with a bulk velocity of $sim0.26c$ extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets. SS 433 differs from other microquasars in that the accretion is believed to be super-Eddington, and the luminosity of the system is $sim10^{40}$ erg s$^{-1}$. The lobes of W50 in which the jets terminate, about 40 pc from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. At higher energies (>100 GeV), the particle fluxes of $gamma$ rays from X-ray hotspots around SS 433 have been reported as flux upper limits. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons interacting with the ambient gas. Here we report TeV $gamma$-ray observations of the SS 433/W50 system where the lobes are spatially resolved. The TeV emission is localized to structures in the lobes, far from the center of the system where the jets are formed. We have measured photon energies of at least 25 TeV, and these are certainly not Doppler boosted, because of the viewing geometry. We conclude that the emission from radio to TeV energies is consistent with a single population of electrons with energies extending to at least hundreds of TeV in a magnetic field of $sim16$~micro-Gauss.
Particle energization in shear flows is invoked to explain non-thermal emission from the boundaries of relativistic astrophysical jets. Yet, the physics of particle injection, i.e., the mechanism that allows thermal particles to participate in shear-driven acceleration, remains unknown. With particle-in-cell simulations, we study the development of Kelvin-Helmholtz (KH) instabilities seeded by the velocity shear between a relativistic magnetically-dominated electron-positron jet and a weakly magnetized electron-ion ambient plasma. We show that, in their nonlinear stages, KH vortices generate kinetic-scale reconnection layers, which efficiently energize the jet particles, thus providing a first-principles mechanism for particle injection into shear-driven acceleration. Our work lends support to spine-sheath models of jet emission - with a fast core/spine surrounded by a slower sheath - and can explain the origin of radio-emitting electrons at the boundaries of relativistic jets.