We develop a non-singular theory of three-dimensional dislocation loops in a particular version of Mindlins anisotropic gradient elasticity with up to six length scale parameters. The theory is systematically developed as a generalization of the classical anisotropic theory in the framework of linearized incompatible elasticity. The non-singular version of all key equations of anisotropic dislocation theory are derived as line integrals, including the Burgers displacement equation with isolated solid angle, the Peach-Koehler stress equation, the Mura-Willis equation for the elastic distortion, and the Peach-Koehler force. The expression for the interaction energy between two dislocation loops as a double line integral is obtained directly, without the use of a stress function. It is shown that all the elastic fields are non-singular, and that they converge to their classical counterparts a few characteristic lengths away from the dislocation core. In practice, the non-singular fields can be obtained from the classical ones by replacing the classical (singular) anisotropic Greens tensor with the non-singular anisotropic Greens tensor derived by cite{Lazar:2015ja}. The elastic solution is valid for arbitrary anisotropic media. In addition to the classical anisotropic elastic constants, the non-singular Greens tensor depends on a second order symmetric tensor of length scale parameters modeling a weak non-locality, whose structure depends on the specific class of crystal symmetry. The anisotropic Helmholtz operator defined by such tensor admits a Greens function which is used as the spreading function for the Burgers vector density. As a consequence, the Burgers vector density spreads differently in different crystal structures.