Do you want to publish a course? Click here

Towards Robust Detection of Adversarial Examples

173   0   0.0 ( 0 )
 Added by Tianyu Pang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test strategy, towards robust detection of adversarial examples. In training, we propose to minimize the reverse cross-entropy (RCE), which encourages a deep network to learn latent representations that better distinguish adversarial examples from normal ones. In testing, we propose to use a thresholding strategy as the detector to filter out adversarial examples for reliable predictions. Our method is simple to implement using standard algorithms, with little extra training cost compared to the common cross-entropy minimization. We apply our method to defend various attacking methods on the widely used MNIST and CIFAR-10 datasets, and achieve significant improvements on robust predictions under all the threat models in the adversarial setting.

rate research

Read More

We address the problem of adversarial examples in machine learning where an adversary tries to misguide a classifier by making functionality-preserving modifications to original samples. We assume a black-box scenario where the adversary has access to only the feature set, and the final hard-decision output of the classifier. We propose a method to generate adversarial examples using the minimum description length (MDL) principle. Our final aim is to improve the robustness of the classifier by considering generated examples in rebuilding the classifier. We evaluate our method for the application of static malware detection in portable executable (PE) files. We consider API calls of PE files as their distinguishing features where the feature vector is a binary vector representing the presence-absence of API calls. In our method, we first create a dataset of benign samples by querying the target classifier. We next construct a code table of frequent patterns for the compression of this dataset using the MDL principle. We finally generate an adversarial example corresponding to a malware sample by selecting and adding a pattern from the benign code table to the malware sample. The selected pattern is the one that minimizes the length of the compressed adversarial example given the code table. This modification preserves the functionalities of the original malware sample as all original API calls are kept, and only some new API calls are added. Considering a neural network, we show that the evasion rate is 78.24 percent for adversarial examples compared to 8.16 percent for original malware samples. This shows the effectiveness of our method in generating examples that need to be considered in rebuilding the classifier.
CAPTCHA (Completely Automated Public Truing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can induce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with randomly sampled font and background images, which are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we design and apply a highly transferable adversarial attack for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarial training, data pre-processing and manual tagging.
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typically aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background, while ensuring that cognitive salience of background remains low. We describe how to compute the resulting non-salience-preserving dual-perturbation attacks on classifiers. We then experimentally demonstrate that our attacks indeed do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.
Audio processing models based on deep neural networks are susceptible to adversarial attacks even when the adversarial audio waveform is 99.9% similar to a benign sample. Given the wide application of DNN-based audio recognition systems, detecting the presence of adversarial examples is of high practical relevance. By applying anomalous pattern detection techniques in the activation space of these models, we show that 2 of the recent and current state-of-the-art adversarial attacks on audio processing systems systematically lead to higher-than-expected activation at some subset of nodes and we can detect these with up to an AUC of 0.98 with no degradation in performance on benign samples.
Deep neural networks (DNNs) are vulnerable to adversarial attack which is maliciously implemented by adding human-imperceptible perturbation to images and thus leads to incorrect prediction. Existing studies have proposed various methods to detect the new adversarial attacks. However, new attack methods keep evolving constantly and yield new adversarial examples to bypass the existing detectors. It needs to collect tens of thousands samples to train detectors, while the new attacks evolve much more frequently than the high-cost data collection. Thus, this situation leads the newly evolved attack samples to remain in small scales. To solve such few-shot problem with the evolving attack, we propose a meta-learning based robust detection method to detect new adversarial attacks with limited examples. Specifically, the learning consists of a double-network framework: a task-dedicated network and a master network which alternatively learn the detection capability for either seen attack or a new attack. To validate the effectiveness of our approach, we construct the benchmarks with few-shot-fashion protocols based on three conventional datasets, i.e. CIFAR-10, MNIST and Fashion-MNIST. Comprehensive experiments are conducted on them to verify the superiority of our approach with respect to the traditional adversarial attack detection methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا