Do you want to publish a course? Click here

Massive 70 micron quiet clumps I: evidence of embedded low/intermediate-mass star formation activity

71   0   0.0 ( 0 )
 Added by Alessio Traficante
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive clumps, prior to the formation of any visible protostars, are the best candidates to search for the elusive massive starless cores. In this work we investigate the dust and gas properties of massive clumps selected to be 70 micron quiet, therefore good starless candidates. Our sample of 18 clumps has masses 300 < M < 3000 M_sun, radius 0.54 < R < 1.00 pc, surface densities Sigma > 0.05 g cm^-2 and luminosity/mass ratio L/M < 0.3. We show that half of these 70 micron quiet clumps embed faint 24 micron sources. Comparison with GLIMPSE counterparts shows that 5 clumps embed young stars of intermediate stellar mass up to ~5.5 M_sun. We study the clump dynamics with observations of N2H+ (1-0), HNC (1-0) and HCO+ (1-0) made with the IRAM 30m telescope. Seven clumps have blue-shifted spectra compatible with infall signatures, for which we estimate a mass accretion rate 0.04 < M_dot < 2.0 x 10^-3 M_sun yr^-1, comparable with values found in high-mass protostellar regions, and free-fall time of the order of t_ff = 3 x 10^5 yr. The only appreciable difference we find between objects with and without embedded 24 micron sources is that the infall rate appears to increase from 24 micron dark to 24 micron bright objects. We conclude that all 70 micron quiet objects have similar properties on clump scales, independently of the presence of an embedded protostar. Based on our data we speculate that the majority, if not all of these clumps may already embed faint, low-mass protostellar cores. If these clumps are to form massive stars, this must occur after the formation of these lower mass stars.



rate research

Read More

The dynamic activity in massive star forming regions prior to the formation of bright protostars is still not fully investigated. In this work we present observations of HCO+ J=1-0 and N2H+ J=1-0 made with the IRAM 30m telescope towards a sample of 16 Herschel-identified massive 70 micron quiet clumps associated with infrared dark clouds. The clumps span a mass range from 300 M_sun to 2000 M_sun. The N2H+ data show that the regions have significant non-thermal motions with velocity dispersion between 0.28 km s^-1 and 1.5 km s^-1, corresponding to Mach numbers between 2.6 and 11.5. The majority of the 70 micron quiet clumps have asymmetric HCO+ line profiles, indicative of significant dynamical activity. We show that there is a correlation between the degree of line asymmetry and the surface density Sigma of the clumps, with clumps of Sigma>=0.1 g cm^-2 having more asymmetric line profiles, and so are more dynamically active, than clumps with lower Sigma. We explore the relationship between velocity dispersion, radius and Sigma and show how it can be interpreted as a relationship between an acceleration generated by the gravitational field a_G, and the measured kinetic acceleration, a_k, consistent with the majority of the non-thermal motions originating from self-gravity. Finally, we consider the role of external pressure and magnetic fields in the interplay of forces.
We investigate the formation and early evolution of star clusters assuming that they form from a turbulent starless clump of given mass bounded inside a parent self-gravitating molecular cloud characterized by a particular mass surface density. As a first step we assume instantaneous star cluster formation and gas expulsion. We draw our initial conditions from observed properties of starless clumps. We follow the early evolution of the clusters up to 20 Myr, investigating effects of different star formation efficiencies, primordial binary fractions and eccentricities and primordial mass segregation levels. We investigate clumps with initial masses of $M_{rm cl}=3000:{rm M}_odot$ embedded in ambient cloud environments with mass surface densities, $Sigma_{rm cloud}=0.1$ and $1:{rm g:cm^{-2}}$. We show that these models of fast star cluster formation result, in the fiducial case, in clusters that expand rapidly, even considering only the bound members. Clusters formed from higher $Sigma_{rm cloud}$ environments tend to expand more quickly, so are soon larger than clusters born from lower $Sigma_{rm cloud}$ conditions. To form a young cluster of a given age, stellar mass and mass surface density, these models need to assume a parent molecular clump that is many times denser, which is unrealistic compared to observed systems. We also show that in these models the initial binary properties are only slightly modified by interactions, meaning that binary properties, e.g., at 20 Myr, are very similar to those at birth. With this study we set up the basis of future work where we will investigate more realistic models of star formation compared to this instantaneous, baseline case.
With a mass of $sim$1000 $M_odot$ and a surface density of $sim$0.5 g cm$^{-2}$, G023.477+0.114 also known as IRDC 18310-4 is an infrared dark cloud (IRDC) that has the potential to form high-mass stars and has been recognized as a promising prestellar clump candidate. To characterize the early stages of high-mass star formation, we have observed G023.477+0.114 as part of the ALMA Survey of 70 $mu$m Dark High-mass Clumps in Early Stages (ASHES). We have conducted $sim$1.2 resolution observations with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm in dust continuum and molecular line emission. We identified 11 cores, whose masses range from 1.1 $M_odot$ to 19.0 $M_odot$. Ignoring magnetic fields, the virial parameters of the cores are below unity, implying that the cores are gravitationally bound. However, when magnetic fields are included, the prestellar cores are close to virial equilibrium, while the protostellar cores remain sub-virialized. Star formation activity has already started in this clump. Four collimated outflows are detected in CO and SiO. H$_2$CO and CH$_3$OH emission coincide with the high-velocity components seen in the CO and SiO emission. The outflows are randomly oriented for the natal filament and the magnetic field. The position-velocity diagrams suggest that episodic mass ejection has already begun even in this very early phase of protostellar formation. The masses of the identified cores are comparable to the expected maximum stellar mass that this IRDC could form (8-19 $M_odot$). We explore two possibilities on how IRDC G023.477+0.114 could eventually form high-mass stars in the context of theoretical scenarios.
We present $sim10-40,mu$m SOFIA-FORCAST images of 14 intermediate-mass protostar candidates as part of the SOFIA Massive (SOMA) Star Formation Survey. We build spectral energy distributions (SEDs), also utilizing archival Spitzer, Herschel and IRAS data. We then fit the SEDs with radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, to estimate key protostellar properties. With the addition of these intermediate-mass sources, SOMA protostars span luminosities from $sim10^{2}-10^{6}:L_{odot}$, current protostellar masses from $sim0.5-30:M_{odot}$ and ambient clump mass surface densities, $Sigma_{rm cl}$ from $0.1-3:{rm{g:cm}^{-2}}$. A wide range of evolutionary states of the individual protostars and of the protocluster environments are also probed. We have also considered about 50 protostars identified in Infrared Dark Clouds and expected to be at the earliest stages of their evolution. With this global sample, most of the evolutionary stages of high- and intermediate-mass protostars are probed. From the best fitting models, there is no evidence of a threshold value of protocluster clump mass surface density being needed to form protostars up to $sim25:M_odot$. However, to form more massive protostars, there is tentative evidence that $Sigma_{rm{cl}}$ needs to be $gtrsim1:{rm{g,cm}}^{-2}$. We discuss how this is consistent with expectations from core accretion models that include internal feedback from the forming massive star.
We report the discovery of 11 bipolar outflows within a projected distance of 1pc from Sgr A* based on deep ALMA observations of $^{13}$CO, H30$alpha$ and SiO (5-4) lines with sub-arcsecond and $sim1.3$ km/s, resolutions. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of stars. The lobe masses and momentum transfer rates are consistent with young protostellar outflows found throughout the disk of the Galaxy. The mean dynamical age of the outflow population is estimated to be $6.5^{+8.1}_{-3.6}times10^3$ years. The rate of star formation is $sim5times10^{-4}$msol,yr$^{-1}$ assuming a mean stellar mass of $sim0.3$ msol. This discovery provides evidence that star formation is taking place within clouds surprisingly close to Sgr A*, perhaps due to events that compress the host cloud, creating condensations with sufficient self-gravity to resist tidal disruption by Sgr A*. Low-mass star formation over the past few billion years at this level would contribute significantly to the stellar mass budget in the central few pc of the Galaxy. The presence of many dense clumps of molecular material within 1pc of Sgr A* suggests that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا